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Executive Summary 
The 2021 Priorities for Weather Research (PWR) report by NOAA’s Science Advisory Board 
identifies three pillars to enable a weather-ready nation: (1) Observations and Data Assimilation 
(DA), (2) Forecasting, and (3) Information Delivery. These pillars are interconnected. For 
example, improved DA leads to better forecasts which requires the forecast information to be 
delivered in a timely and reliable manner. In this document, we focus specifically on the first 
pillar, observations and DA. This document outlines a development strategy and philosophical 
shift for the NWS to advance the state of infrastructure and science for operational DA to realize 
improved operational predictions and better meet the agency mission. Several grand challenges 
and overarching priorities have been identified and will need to be addressed in the coming 
decade, including: 

● Multiscale DA; 
● Improved assimilation of remotely sensed observations; 
● Enhanced use of the established suite of in-situ observations; 
● More agility toward the use of emerging data sets; 
● Better representation and estimation of system uncertainties and systematic errors; 
● Handling nonlinearity and non-Gaussianity; 
● Coupled Earth system DA; 
● Processing and assimilating growing volumes of observational data; 
● Integration and hybridization of artificial intelligence/machine learning. 

As NOAA has embraced the concept of the Unified Forecast System (UFS), the need for a 
unified DA infrastructure across applications and to enable community development has grown. 
The Joint Effort for Data assimilation Integration (JEDI) will be this infrastructure, and the need 
to advance the capabilities and work toward operational transition is critical to the near-term 
strategy. Work is already underway, and a high-level introduction to JEDI transition activities is 
discussed. However, the full transition to JEDI for all operational applications is going to take 
significant resources and several years to complete. In parallel, several research and 
development priorities will continue to be pursued. This includes the continued optimization of 
current assets and integration of new components of the global observing system. Decisions will 
need to be made on an ongoing basis as to which things should be developed with current and 
legacy infrastructure versus deferment to JEDI and future applications. This document 
discusses several aspects of the development priorities and future operational readiness across 
the spectrum of DA activities. While JEDI infrastructure is critical, many aspects of the strategy 
touch on institutional and cultural challenges. If these are not also addressed, the maturity, 
functionality, and impact of JEDI for operational utilization will not be fully realized or 
consequential. 

Finally, this strategic document outlines some of the potential risks that will need to be 
addressed in the coming decade, particularly those related to resources, observational data, 
management, dependencies, and high-performance computing. 
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Vision for Success 
1. JEDI as the foundation for data assimilation – infrastructure designed to 

realize innovation; 

2. Engagement in research and development across the spectrum of 
readiness levels – new funding and joint collaboration with external partners; 

3. Embracing change – reimagination of how we do data assimilation; 

4. New technology and best practices – exploitation and integration of AI/ML; 

5. Cultivating and sustaining a vibrant workforce – people are the key to our 
future success. 

1. Introduction 
The steady increase in the skill of numerical weather prediction (NWP) and Earth system model 
forecasts has been described as representing a quiet revolution (Bauer et al. 2015). In 
particular, deterministic global NWP skill continues to improve by about one day of forecast lead 
time per decade of development. The gains in skill can be attributed to many factors, including 
increased computing power to facilitate more complexity and higher spatial resolution, 
improvements in the data assimilation (DA) systems, as well as quality and number of 
observations being assimilated (Simmons and Hollingsworth 2002). The importance of DA in 
improving predictive skill is nicely demonstrated by evaluating forecast skill obtained from 
various reanalysis products. Dee et al. (2011), for example, show the skill of forecasts for a 
period in 1989 from three different systems, including the ECMWF system at the time, and 
reforecasts initialized from reanalysis states that had utilized more advanced modeling and 
assimilation systems in retrospective mode through the same period. The skill is demonstrably 
improved through each subsequent reforecast dataset (Fig. 2; Dee et al. (2011)). 

The National Weather Service, and NOAA more broadly, has initiated a new effort to engage in 
a community-based, coupled, comprehensive Earth modeling system, the Unified Forecast 
System (UFS). The UFS is designed to be the source system for NOAA’s operational NWP 
application as documented in the UFS Strategic Plan: 2021-2025 (UFS Steering Committee & 
Writing Team, 2021). Part of this strategy involves an evolution toward a unified DA system 
through new infrastructure. The new DA infrastructure will have to meet the needs of the UFS 
coupled applications, along with addressing several challenges throughout the coming decade. 
The NWS DA grand challenges and priorities are consistent with those that have been identified 
and discussed at several meetings, including the NCAR/JCSDA DA Blueprints Workshop in 
Boulder, CO (March 2016), the Unified DA Planning Meeting in College Park, MD (April 2017), 
and WWRP-WCRP Joint Symposium on DA and Reanalysis (Valmassoi et al. 2023). These 
priority areas include: 
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● Multiscale DA (spatial and temporal): from global to convective scales; assimilation 
across scales; 

● Improved assimilation of remotely sensed observations, such as all-sky/all-surface data 
and Doppler radar; 

● Enhanced use of the established suite of in-situ observations; 
● More agility toward the use of emerging data sets, both traditional (e.g., satellite) and 

novel (e.g., smartphone pressures); 
● Better representation and estimation of system uncertainties and systematic errors; 
● Handling nonlinearity and non-Gaussianity; 
● Coupled Earth system DA; and 
● Processing and assimilating growing volumes of observational data. 

In the time since those workshops, additional challenges and drivers have revealed themselves 
including: 

● Need for reengineering of observation processing; 
● Computational efficiency with a path forward to exascale and cloud HPC; 
● Integration with other elements of cross-cutting infrastructure; 
● Requirements for reanalysis; and 
● Leveraging of new technologies such as artificial intelligence (AI) and machine learning 

(ML). 

More recently, NOAA and NWS have identified a series of priorities and vision areas through 
multiple documents, including the NWS 2019-2022 Strategic Plan (NWSSP), NOAA’s 
2020-2026 Research and Development Vision Areas (R&DVA, NOAA Research Council 2020), 
and the NOAA Science Advisory Board’s Report (2021) on Priorities for Weather Research 
(PWR). One common theme that applies to a majority of NOAA’s mission areas is the emphasis 
on collaboration and engagement both within different line offices across NOAA, but also with 
the broader U.S. weather enterprise, including the research community and private sector 
(NWSSP Items 1.9, 2.1, 2.10, 2.11, 3.9; R&DVA Key Question 3.1; PWR Priority Areas FE-4, 
FE-10). Additionally, observations and DA together have been defined as the first of the “three 
interconnected pillars'' to support a Weather-Ready Nation in the PWR. The other two pillars are 
Forecasting and Information Delivery, which include areas like model development and reliable 
data dissemination. This document focuses primarily on the first pillar, Observations and DA, 
which further features three priority areas: the improved use of existing observations (see also 
NWSSP Item 2.5); advanced DA methods, capabilities and workforce (NWSSP Items 2.1, 2.5, 
2.11, 3.2, 3.3; R&DVA Key Questions 1.1, 3.1); and identifying gaps in the observing system 
and then the use and assimilation of new observations (NWSSP Items 2.4, 2.5, 3.8; R&DVA Key 
Question 3.2). 

In this document, we outline a vision and present a strategy for DA development for the next 
decade to meet the needs of operational NWP for the NWS. The critical element for the first 
phase of the next decade will be the replacement of much of the current DA infrastructure with 
software from the Joint Effort for Data assimilation Integration (JEDI). JEDI is the 
next-generation DA infrastructure that is being led by the Joint Center for Satellite Data 
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Assimilation (JCSDA), and will provide a basis about which the NWS will be able to achieve the 
goals of a unified DA infrastructure along with addressing the scientific grand challenges to 
incorporate innovations into operational systems. In addition to the new JEDI infrastructure, the 
evolution toward coupled DA across the spectrum of UFS applications will be central to the 
strategy. 

Operational NWP systems are complex and contain many interdependent pieces. In addition to 
DA and observation processing, they include the forecast model, verification utilities, and 
workflow superstructure. In order to advance the performance and predictive skill from 
UFS-based applications, these pieces need to come together with sufficient HPC resources and 
support, as well as the availability of scientific and computational diagnostic tools. We note that 
while the success of DA innovation is dependent on these aforementioned pieces, this 
document will solely pertain to the DA and observational components of the UFS. 

2. Advanced Infrastructure for Data Assimilation 
The transition of assimilation infrastructure for the complex, critical components of the 
production suite, such as for the Global Forecast System (GFS) and its associated Global Data 
Assimilation System (GDAS), takes meticulous planning and execution. Since May 2007, the 
GDAS has used the Gridpoint Statistical Interpolation (GSI) software to produce global 
operational analyses (Kleist et al. 2009b). Before that, the Spectral Statistical Interpolation (SSI) 
software, upon which the GSI was built, was the bedrock of global DA at NCEP, with a 
combined history of over 30 years of operational activity. The transition from the SSI to GSI for 
the GFS/GDAS took several years and considerable resources to complete. Because of the 
long history of the codebase, the GSI system is very mature, and is the basis by which most 
NWP systems at NCEP are initialized. While the GSI has served the operational Earth system 
prediction enterprise well for the past decade and a half, we have begun to encounter the upper 
limits on the GSI’s capabilities as the size, scope, and complexity of the Earth system prediction 
continues to grow. A review of the history of DA development activities and a summary of the 
current state of the operational systems can be found in Kleist et al. (2023). 

The advent of JEDI presents a community-driven approach to comprehensive Earth system DA, 
underpinned by modern software development standards that accommodate the inclusion of 
advanced scientific developments in a sustainable manner. The JEDI infrastructure is being 
developed with several specific principles that make it attractive for pursuit as the 
next-generation Earth system DA framework for use by the NWS: separation of concerns; 
flexible, modular, mutualized solutions; and an agile framework to enable direct development 
and collaboration across line offices, agencies, and partners. Through the lens of JCSDA and its 
partners, the decision was made to adopt the JEDI infrastructure as the solution for unified DA 
for the UFS. For more information on JEDI, its design, and major components, see Appendix B, 
or the JCSDA online JEDI documentation for comprehensive details. The evolution to 
JEDI-based DA is the critical element of the strategy to realize future scientific innovation 
to advance the state of the science utilized for operational DA systems at NWS. 
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While formal JEDI transition plans will be drafted and published for specific operational DA 
systems, in this section, we provide an overview of the three primary areas of focus: 1. 
validating components, 2. optimization and robustness, and 3. balancing progress in transition 
and science. 

2.1 JEDI Validation 

JEDI will ultimately provide a promising foundation for operational DA, but the transition itself is 
a resource-intensive process. In particular, we must ensure the new JEDI-based framework 
performs within the rigors of operational Earth system prediction and meets current 
requirements. This includes careful validation of all components, operators, and algorithms to 
ensure that new software performs precisely as designed relative to present-era systems (e.g., 
the GSI). This baseline ensures that initial performance will be maintained at a minimum, 
eliminating substantial risk in this complex transition process. 

Figure 1. Scatter plot comparing simulated brightness temperatures from AMSU-A MetOp-A 
Channel 14 between GSI and JEDI UFO valid 06 UTC December 16, 2020. 

Validation efforts are presently underway for the suite of observation operators (the Unified 
Forward Operator, or UFO). In Fig. 1, we see one such example of the validation step 
associated with the transition effort. Here we compare GSI and JEDI simulated brightness 
temperatures for AMSU-A MetOp-A Channel 14 for one analysis cycle. In this example, we see 
that both systems produce similar results, with a correlation nearly equal to unity. 
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Comprehensive validation requires the proper suite of tools, including those that are currently 
available for operational monitoring (Kleist et al. 2023). The transition to JEDI presents an 
opportunity to re-engineer NCEP’s assimilation monitoring system as we adopt new standards 
for observation-space and minimization diagnostics. This effort involves the development of a 
generic suite of tools that supports operational assimilation monitoring across all UFS 
applications, facilitates automated generation of diagnostic figures and statistics, and can be 
leveraged in the validation process. The unified DA monitoring and validation system will be 
developed using modern software and programming practices and leveraging open-source 
libraries and those developed by our partners. These tools will be developed in conjunction with 
web infrastructure so that developers and customers can freely view the performance of UFS 
DA applications with minimal effort. Information such as whether or not an observation was 
operationally assimilated into the NCEP systems is regularly requested. Work is already 
underway to build such a set of tools that can meet internal needs as well as fulfill obligations to 
things like the expanding World Meteorological Organization Integrated Global Observing 
System (WIGOS) Data Quality Monitoring System (WDQMS). 

In addition to real-time assimilation monitoring, the web infrastructure shall include pages for DA 
and observation configuration information. We may also include tools provided by community 
verification systems such as the Model Evaluation Tools package, the established community 
software for verification and validation of UFS-based applications. 

Finally, validation will be carried out for all components and systems for which there exists a 
pre-existing operational baseline (Fig. 2). While resource intensive, such an approach minimizes 
risk in the transition process. 

Figure 2. Simplified timeline of the evaluation process for full JEDI acceptance testing and 
transition to operations for GDAS. 
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2.2 Optimization and Robustness 

Applications intended for operations must be fast and efficient. As a part of the transition 
process, JEDI will undergo optimization procedures such that its performance meets or exceeds 
the operational baseline for a given configuration. Here, performance considers computation 
and memory used along with the time required for execution. This shall also be extended to 
measures of I/O bandwidth, owing to the high I/O demands associated with DA. With the 
transition to exascale and cloud computing, JEDI applications should be highly scalable and 
able to efficiently run in a variety of computing environments. These considerations will be 
examined as part of the optimization procedure with an emphasis on operational requirements. 
Bottlenecks shall be identified and addressed in this procedure in order to meet future 
operational constraints. Time and resources conserved create space for more advanced 
algorithms and better utilization of observations while maintaining timely delivery of skillful 
forecast products. 

Application performance also includes reproducibility. Given the same inputs to JEDI, 
applications should generate identical results across repeated executions of the code on the 
same computing architecture. Reproducibility is important for scientific and technical integrity. It 
also enhances the effectiveness of collaboration since all partners can have confidence in 
independently generated results. For some applications, reproducibility may only be obtained 
when using the same job configuration. More desirable is reproducibility independent of the job 
configuration, e.g., across varying task counts or threads. Finally, reproducible codes are a 
requirement for operational systems at NCEP. Therefore, this operational requirement also 
applies to JEDI. 

Operational applications must be robust and able to properly respond to unexpected real-time 
situations (missing or corrupted input data, unphysical computational results, etc.). JEDI 
applications for operations will be stress-tested for a wide variety of operational failure 
scenarios. A hierarchy of error messages shall be standardized across JEDI applications to 
provide actionable information for a timely response by NCO staff and EMC developers. 
Checkpointing, if possible, shall be built into applications to allow quicker recovery in the event 
of system or application failures. Many of these requirements are outlined in existing operational 
implementation standards documents (e.g., WCOSS Implementation Standards). JEDI 
applications will conform to these and future updates or replacement documents. 

2.3 Balancing Progress in Transition and Science 

Transitioning the entire operational DA enterprise requires a substantial investment of time and 
resources. This substantial investment will create opportunities for scientific progress in the 
future, but it comes at the cost of making scientific advances in our operational DA systems 
today. While the challenge is presented in a binary manner, a balance between transition and 
scientific progress can be achieved with careful planning through an intermediate, stepwise 
transition. Such a process would involve transitioning components of the JEDI framework as 
they reach operational readiness. For example, one could begin by replacing the observation 
operators in one upgrade that would then be followed by a replacement of the solver(s) in the 
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next. Given the unified nature of JEDI within the larger UFS framework, lessons learned from 
the JEDI transition of one DA system (e.g., global) offer the potential for accelerated JEDI 
transition of subsequent DA systems (e.g., RRFS, HAFS, etc.). This method lowers the stakes 
by removing pressure from an “all or nothing” forklift upgrade, thus raising the likelihood of 
success. Additionally, there is room for integration of innovation as part of the JEDI transition 
process itself. The goal is not to implement JEDI solely for the purposes of reproducing what is 
already operationally utilized. 

Formal transition project plans are being developed for all relevant future UFS-based 
applications and will be made available. These will be coordinated with the various project plans 
for individual applications that are part of the 5 year EMC Implementation Plan. 

Transition to JEDI Infrastructure 
1. Separation of concerns – generic, modular code that can be applied to 

numerous modeling applications; 

2. Joint effort – development shared between multiple agencies, can more 
rapidly introduce new observations or techniques; 

3. Scientific validation – all JEDI components need to meet or exceed current 
operational systems’ scientific capabilities; 

4. Operational hardening – essential to ensure that JEDI applications are robust 
enough for NWS operations, including running in a timely manner; 

5. Delicate balance of resources – make progress in transition efforts without 
stifling innovation, else the cost associated with transition will delay any 
advancements in the science. 

3. Research and Development 

3.1 Improved Use of Observations 

While our current DA systems assimilate a variety of observations from a diverse range of 
instruments (Kleist et al. 2023), a subset of observations are presently assimilated but remain 
underutilized. There is also an exciting array of emerging datasets that have the potential to 
improve the current observing network. Such examples include Uncrewed Aircraft System 
(UAS) technology, web cameras (Carley et al. 2021), new satellite constellations in 
geosynchronous and polar orbit, as well as a growing industry toward providing small, 
(relatively) inexpensive satellites. Over the next decade, development will include efforts to 
improve the use of today’s observing system while also focusing on emerging observation 
technologies. 
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In modern-day NWP systems, some of the largest impacts on reducing forecast errors generally 
come from the infrared and microwave-sounding instruments on polar-orbiting satellites as 
supported by evidence from Observing System Experiments (OSE) and Forecast Sensitivity to 
Observations Impact (FSOI), e.g., such as Bormann et al. 2019; Boukabara et al. 2020. Until 
recently, however, observations from infrared sensors were assimilated solely in clear sky 
conditions, significantly limiting the number of observations that can be used. Microwave DA 
(AMSU-A/ATMS) in non-precipitating, non-convective, cloudy conditions was implemented in 
2016 for the operational GFS/GDAS. Since then, work has extended this capability to more 
microwave instruments and to include precipitation hydrometeors (see GFSv16.3) and 
convective clouds. Greater use of these observations in cloudy conditions and the extension of 
this capability to the infrared (where 90% of available fields-of-view are cloud-affected) are 
major priorities for the next decade (Geer et al. 2019). This effort will require further advances in 
radiative transfer and a thorough re-evaluation of quality control and observation error modeling 
capabilities. 

A common criticism of using observations in NWP systems, particularly radiance observations, 
is the underutilization of many observing systems. The reasons for this are multifaceted: 

1. Redundant information in the observations. The most notable example of this is the 
hyperspectral sounders, where channel selection has been employed so that NWP 
systems assimilate less than 10% of the available channels. However, the information 
content of those channels represents the bulk of the available information as many 
channels have similar sensitivities (Collard 2007). 

2. The forward model is not sufficient to accurately simulate a given observation. The 
uncertainties in the forward model have been the situation with cloudy radiances until 
recent years and continue to be an issue for certain surface types. 

3. Observations in the presence of significant model biases may need to be excluded from 
assimilation. Observations in the areas where the forecast model has significant bias 
may result in first-guess departures with unphysical signals, thus preventing the data 
from being assimilated correctly. Areas associated with significant cold air outbreaks is 
one such example. These occur in the winter at high latitudes where cold and dry air with 
low temperatures below the freezing point is advected over the relatively warm ocean, 
forming low-level shallow convective clouds. As a result, supercooled water clouds form 
at low temperatures far below the freezing point. The microwave observations detect 
supercooled liquid water in the cold air outbreak area, while the forecast model predicts 
otherwise. The discrepancy between the observation and forecast creates unphysical 
first-guess departures and leads to biased analysis. Therefore, excluding observations in 
cold air outbreak regions may be necessary. 

4. Complex error characteristics. The existence of spatially and spectrally correlated 
observation errors has resulted in the need to downweight observations and/or spatially 
thin the data. Currently, the thinning distance in the GDAS is 145 km and needs to be 
revisited, including a strategy to employ more adaptive data selection strategies. While 
advancements have been made in the application of inter-channel correlated 
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observation errors, particularly for hyperspectral infrared satellite observations, much 
work remains to expand this capability to a more general application of correlated errors. 

5. Dataset volumes are too large to process. Reduction of data volumes is necessary to 
ingest a number of datasets, most notably Doppler radial wind and geostationary imager 
radiances. Strategies such as super-obbing can reduce the need for data thinning, while 
multi-channel observations may be represented through principal components. 

The implementation of the direct use of satellite radiances and inline variational bias correction 
instead of relying on retrievals was a significant leap in operational DA for numerical weather 
prediction (Derber and Wu 1998; Zhu et al. 2015; Zhu et al. 2016). However, for various 
reasons, several derived products remain critical for use within DA systems for the Earth 
system. In particular, this includes retrievals of ozone, atmospheric motion vectors, sea ice, and 
soil moisture. The further utilization of all-sky/all-surface satellite radiances and further 
algorithmic advances may allow for the more direct use of data from satellites and allow for 
continued evolution away from retrieved products and issues inherited therein, such as the 
specification of error characteristics, additional processing and dependencies. 

3.1.1 Toward Improved Use of “Conventional” Observations 

The WMO began a push for a transition from Traditional Alphanumeric Codes (TAC) to Table 
Driven Code Forms (TDCF), such as BUFR, in the early to mid-2000s with a goal of full 
transition to be completed by the end of 2014. However, this full transition to dissemination of 
the relevant observation types to TDCF has not yet been completed and lingering issues 
remain. NCEP has already successfully completed reengineering projects to enable utilization of 
data from both TAC and BUFR disseminated formats for many data types; a few data types 
such as radiosondes and dropsondes are still in the final stages of development. There are 
advantages to the TDCF/BUFR disseminated data such as additional information content, like 
GNSS-based position, an improvement over current methods to derive and estimate drift 
information. 

High-resolution radiosondes are now becoming available through the BUFR dissemination 
process. The capability of using high-resolution radiosonde data has been developed in GSI. 
Compared to the current radiosonde data, the new radiosonde measurement reports more 
frequently in the vertical (see Fig. 3). Observation values, time, and location are recorded 
automatically and accurately. The descent data (after balloon burst) may also be included. The 
observation errors may need updating and tuning before turning on in operations. Work is 
underway to encode the BUFR transmitted data into the legacy PrepBUFR format, while efforts 
are pivoting toward making more optimal use of the additional information content in the future. 
For example, the inclusion of the data into PrepBUFR requires a subsetting of individual profiles 
to no more than 255 elements, which is suboptimal as good data may be thrown away. The 
initial effort will allow for continuity of operations, particularly as countries are slowly turning off 
transmission of their parallel TAC feeds. Future efforts within JEDI will focus on more optimal 
use of the higher resolution data and additional content therein. 

Observations from surface platforms such as ships, buoys, and land metar/synoptic stations 
provide a tremendous amount of near-surface meteorological information with high temporal 
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Figure 3. Radiosonde temperature reports: regular (red) and high-resolution radiosonde (black) 
from station identifier 47582 (Akita, Japan). 

frequency. This is further complemented by regional mesonet networks in places such as the 
United States. Such data has been regularly assimilated into regional systems such as the 
RAP/HRRR and is an important dataset (James and Benjamin 2017). 

However, for global NWP systems, the application of surface data is a bit more complex. While it 
is standard practice to assimilate surface pressure observations from the entirety of the 
platforms across applications, the assimilation of wind, temperature, and humidity data from 
land surface stations is treated differently owing to issues related to representativeness. In the 
GDAS, temperature, humidity, and wind information is assimilated from marine surface data and 
only monitored for land surface stations. Some operational centers utilize the two-meter 
temperature and dew point observations to drive a “screen-level analysis” that is separate from 
the atmospheric assimilation system. This screen-level/surface analysis is then leveraged to 
drive updates to soil moisture (Mahfouf 1991). This two-step approach is still the practice at 
places such as ECMWF (Seuffert et al. 2003). Some initial work has been done to explore 
options in the GFS/GDAS, including 1) direct assimilation of 2-meter temperature and humidity 
data into the atmospheric assimilation system, and 2) leveraging EnKF-based strongly coupled 
assimilation to simultaneously update soil and near-surface atmospheric states. The latter 
option will continue to be developed for eventual implementation. 

3.1.2 Improved Use of Satellite Radiances 

The use of radiance observations in NWP may be advanced in a number of ways: 

1. Improved and increased use of observations over differing surface types. While 
surface-sensitive radiance observations are presently used over most surface types, 
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much of the impact from these measurements is over the ocean. This is because 
uncertainties in emissivity and first-guess temperatures are lower for oceanic surfaces 
and issues with inhomogeneity within the instruments’ field of view for non-ocean 
surfaces. 

The uncertainties in emissivity can be demonstrated through a systematic bias identified 
in the emissivity estimation from the operational CRTM for ocean-surface emissivity at 
the infrared range. The comparison of first-guess departures under clear-sky conditions 
calculated from CRTM and RTTOV using the same set of model background fields 
revealed that the ocean emissivity estimation from CRTM is consistently higher when 
compared to that from RTTOV (Fig. 4). The systematic biases can also be observed 
through the first-guess departures, especially for higher latitudes (Fig. 5). The root cause 
is that the current CRTM ocean emissivity does not take into account the sensitivity of 
sea surface temperature to emissivity. This improvement to the emissivity calculation has 
been included in CRTM v3.0 (Liu et al. 2019). 

Moving towards greater impact for all surface types will require improved surface 
characterization, through a combination of improved background information and use of 
the observations themselves, and improved radiative transfer. Improved land surface 
radiative transfer will be provided via the Community Surface Emissivity Models module 
to be released with CRTM v3.0. At the same time, the move towards coupled modeling 
and DA will improve the background estimates of the land surface emissivity and 
temperature as well as allow for a consistent solution between atmospheric and surface 
states. In particular, land-surface emissivity at microwave frequencies is strongly 
dependent on the soil moisture content. Separately, the use of emissivity as a control 
variable within the assimilation problem may continue to be pursued as early 
demonstrations have shown some promise and this methodology has already been 
demonstrated (as a preprocessor) at other NWP centers (Pavelin and Candy 2013) . 

Figure 4. Root-mean-square difference of first-guess departures from RTTOV and CRTM for 
IASI. 
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Figure 5. First-guess departure of IASI at 801 cm-1 . 

2. Increased use of observations in cloudy and precipitating conditions. The move towards 
cloudy radiance assimilation has been a major theme of the last decade. We currently 
assimilate all-sky microwave observations, including in the presence of precipitating 
clouds in the operational GDAS. The move towards true all-sky assimilation for both 
microwave and infrared measurements will continue over the next ten years. The main 
challenges concern the more complex radiative transfer for scattering scenarios (which 
requires more detailed knowledge of hydrometeor size and shape distributions), how to 
accurately account for cloud fraction (which necessarily requires the use of multiple 
independent column radiative transfer), and the correct characterization of precipitation 
and convective clouds in the radiative transfer models. 

The most computationally cost-effective approach to calculate hydrometeor-affected 
radiance is using the two-column method, as introduced by Geer et al. in 2009. This 
approach simplifies the satellite field of view representation into two distinct 
columns—one for the clear portion and the other for the cloudy one. Effective cloud 
coverage is determined by assuming a specific cloud overlap scheme for each field of 
view. The radiance from the hydrometeor-affected field of view is then computed as a 
linear combination of the radiance from the cloudy and clear columns, with weights 
assigned based on the effective cloud coverage and cloud-free coverage, respectively. 
While the two-column approach is practical for simulating cloudy microwave scenarios, it 
is less suitable for handling infrared observations, which demand a more nuanced 
consideration of cloud characteristics such as amount, height, and coverage. For precise 
simulation of cloudy radiance, the multiple independent column radiative transfer 
method, as outlined by Geer et al. in 2019, becomes imperative. This method utilizes the 
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number of columns necessary to represent all conceivable permutations of cloud layers, 
with each column accurately representing the fraction of the grid box. By treating the 
atmosphere as a collection of independent columns, this approach acknowledges the 
spatial variability of atmospheric conditions, thereby significantly enhancing the accuracy 
of radiative transfer simulations within a sensor's field of view. 

3. Consistent use of assumptions between the observation operator and the forecast 
model. In the assimilation of radiance with cloud and precipitation, many assumptions 
need to be made about the microphysics (including particle size distributions) and 
subgrid variability, such as cloud and precipitation overlap in both model and observation 
operators. These assumptions are often inconsistent, even within different parts of the 
forecast model. For the next development phase, it makes sense to think about the 
observation operator and forecast model as part of a unified system, possibly sharing 
components such as sub-grid cloud-generators and particle habit models. 

4. Improved modeling of cloud and precipitation in the forecast model. The forecast model, 
used as the background state for the assimilation, often has large biases in regions with 
clouds and precipitation. The biases can be observed in the first-guess departures. For 
example, all-sky MW departures reveal biases in the modeled clouds in maritime 
stratocumulus regions and cold air outbreaks due to less than optimal moisture physics 
representation (Forbes et al. 2016; Kazumori et al. 2016). Biased first-guess fields from 
the model result in less optimal analysis, with the impact further complicated by 
interaction with the bias correction scheme. Improving the modeling of moist physics can 
greatly increase the number of observations assimilated under all-sky conditions and 
prevent the model bias aliasing into the analysis. 

5. Improved modeling and development of observation operators. The ability to assimilate 
observations in a DA system relies on the quality and robustness of the observation 
operator to simulate the observed from the model background. For example, the quality 
of the simulated observation from CRTM for the GMI sensor can be improved greatly by 
including a surface reflectance correction model (Deblonde and English 2000) for better 
simulation of radiance reflected by surface (Fig. 6). To support all-sky and all-surface 
radiance assimilation, the radiative transfer model must include a more robust 
representation of surface emissivity/reflectance properties, polarization, particle shape, 
and distribution. As the forecast model becomes more sophisticated in modeling subgrid 
clouds and moisture processes, it is necessary to account for the subgrid variability of 
cloud fraction (such as the cloud overlap) and precipitation in the forward calculation. 
CRTM version 3 has extended its capabilities to support ultraviolet sensors and full 
Stokes polarization simulation across all wavelengths. It also includes multi-threaded 
parallelization using OpenMP directives, vastly improving wall-clock performance. In the 
future release, CRTM will implement a physically-based surface reflectance model 
based on the bidirectional reflectance distribution function (BRDF). The combination of 
full polarization and BRDF is expected to improve the accuracy of the simulated 
radiances under scattering conditions. 
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Figure 6. First guess departures from GMI with (orange: CRTM-2.3.0) and without (gray: 
CRTM-2.2.3) the proper surface reflectance model implemented in CRTM. 

6. Better characterization of observation errors and improved QC. Most observation errors 
in the current DA system are uncorrelated and derived in often ad hoc ways (usually 
based on first-guess departures). Spectrally correlated observation errors have been 
introduced to the GSI (Bathmann and Collard 2021), using error estimation procedures 
introduced by Desroziers et al. (2005). The extension of correlated observation errors to 
other observation types will continue, with particular attention paid to all-sky conditions, 
as the forward model and representativeness errors are expected to be highly correlated 
and situation-dependent. The issue of spatially correlated observation errors remains a 
significant challenge and longer-term goal. 

7. Apply variational quality control (VarQC). While the VarQC with a Huber norm distribution 
(Tavolato and Isaksen 2014) has been implemented for in situ data (Purser 2018), it has 
not yet been applied to satellite radiance data. In the assimilation of cloud and 
precipitation-affected radiances, the uncertainties in the observation operator and the 
forecast model result in a large range of first-guess departures with more outliers in the 
distribution. VarQC is not a criterion for rejection; rather, it is a re-weighting of 
observations. VarQC makes it possible to significantly loosen or do away with the gross 
check and accept outliers into the assimilation. Consequently, more observations can 
contribute to the analysis, and those with large first-guess departures will be strongly 
down-weighted. 

8. More efficient use of data. In addition to increasing the impact of data through extension 
to more surface types and hydrometeor scenarios, as described above, there is also 
potential to make more use of data that is currently available but not assimilated as it is 
computationally too expensive. The hyperspectral sounders are the best example of this, 
where only 1-2% of channels are actually used. These channels are chosen as they 
contain the majority of the information contained in the spectrum. However, the full 
spectrum may be represented through principal component analysis in a more 
compressed form. Data from the EUMETSAT MTG-IRS instrument will be distributed in 
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principal component form, and the assimilation of these data will be the first step towards 
more efficient assimilation of hyperspectral radiances. 

9. Use more satellite radiance data. ECMWF conducted a series of observing system 
experiments (OSEs) examining the addition of temperature and humidity sounders from 
a baseline that includes no MW sounders, aiming to evaluate the incremental benefit of 
adding sounders to the assimilation system (Duncan et al. 2021). The study found that 
while significant improvements in forecast skill and background fit to independent 
observations are gained from the first sounder added, beneficial impact from the 
subsequent sounders added to the system is also evident, showing no apparent 
saturation in skill improvement with the increasing number of sounders assimilated. A 
separate study by Geer et al. (2017) reviewed the forecast sensitivity to satellite radiance 
observations in the ECMWF operational system based on the FSOI technique. The 
study showed that while the beneficial impact from MW temperature-sounding 
observations (e.g., AMSU-A and ATMS) is significant, the beneficial impact from MW 
humidity-sounding (e.g., MHS and ATMS) and imager observations (e.g., GMI and 
AMSR-2) is increasing rapidly as the more humidity-sensitive observations are 
assimilated. Their overall performance slightly outperformed the temperature 
observations in recent periods. For IR sensors, temperature information still dominates 
the impact compared to humidity. However, a more beneficial impact from Himawari-8, 
which is assimilated hourly and has more water-vapor channels than other similar 
sensors on geostationary satellites, is observed, indicating that potentially more data 
impact can be extracted from IR humidity channels. 

In the operational GDAS, MW radiances from AMSU-A and ATMS are assimilated under 
all-sky conditions; those from SSMIS sounding channels and MHS are assimilated in 
clear-sky conditions. No data from MW imagers are included. Radiances from IR 
sensors, including IASI, CrIS, ABI, AHI, and SEVIRI, are assimilated under clear-sky 
conditions. The number of humidity channels assimilated from hyperspectral sensors is 
limited due to non-linearity. The path forward for radiance assimilation is clear. We must 
extend the use of MW radiance to include humidity information from imagers such as 
GMI, AMSR-2, and SSMIS and assimilate all MW sensors under all-sky conditions. 
Increasing the use of IR humidity channels should be explored, eventually moving the IR 
humidity-sounding channels to all-sky assimilation. 

3.1.3 Improved Use of GNSS Radio Occultation 

As described in Kleist et al. (2023), GNSS-RO data has become a critical component of the 
global observing system for NWP, providing critical information on temperature and humidity, 
with small biases, and serves as anchoring observations for bias correction. NCEP has been 
utilizing and improving on the NCEP Bending Angle Model (NBAM, Cucurull et al. 2013) for 
many years. Recent efforts have focused on optimizing the assimilation of new suites of 
available data, including those now being purchased from commercial vendors. This includes 
optimization of the forward operator, modernizing and updating quality control procedures, and 
optimizing assigned observation errors. 
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In addition to the integration of new satellites and sensors as they come online, there are still 
some limitations that need to be addressed to further utilize the observations at both high and 
low altitudes. Within and near the planetary boundary layer, large gradients of atmospheric 
refractivity render the assimilation of bending angles from GNSS-RO an ill-posed problem. New 
methodologies and improvements to the current one-dimensional forward operator are under 
development (Cucurull and Purser, 2023). Beyond improvements to the current operator that is 
utilized in GSI, there are already several observation operators being developed within the JEDI 
UFO framework, including two-dimensional operators such as the Radio Occultation Processing 
Package. Such capabilities through the JEDI/UFO infrastructure will allow for the exploration 
into advanced techniques and further open avenues for broad, international collaboration and 
coordination. This could potentially include expanding to more complete ray-tracing techniques 
and accounting for ionospheric effects as well as space-weather, coupled ionospheric 
assimilation. 

There has been an expansion in the use of GNSS radio occultation to be deployed from aircraft 
to supplement targeted observing, particularly for high-impact events such as tropical cyclones 
and atmospheric rivers. Significant progress has been made in the assimilation of such airborne 
GNSS observations from research missions in previous years as part of several atmospheric 
river reconnaissance programs (Haase et al. 2021). Such observations are likely to continue to 
be deployed and will provide a potentially valuable data source for operational utilization. 

The NCEP prediction systems have also been underutilizing ground-based GNSS data as a 
source of precipitable water information for NWP. The assimilation of ground-based GNSS 
Zenith Total Delay (ZTD) has proven successful in many NWP systems, and there is a growing 
international network of such observations (e.g., Yang et al. 2020). Forward operators for ZTD 
assimilation already exist in both GSI and JEDI/UFO. The development of capabilities to 
leverage the growing number of ZTD observations from ground-based GNSS networks will be a 
high priority in the coming years. 

3.1.4 Improved Use of Ozone and Atmospheric Motion Vector Retrievals 

In general, it is considered desirable to assimilate observations in a form as close to the 
instrument level as possible. The reasons for this are a) the characterization of the 
measurement errors is normally less complex at this level and b) derived products usually 
include some a priori assumptions that can dilute the information content of the observations if 
not handled correctly. The most often cited example is the background error covariance that is 
used to constrain 1DVar retrievals from radiance measurements, but more subtle constraints 
also exist. These considerations drove the move from assimilating retrievals to radiances in the 
1990s, aided by the development of fast radiative transfer models (and their adjoints) such as 
CRTM. Ozone and AMVs (atmospheric motion vectors) are two examples of derived products 
that are assimilated in most major NWP models. There is scope to make progress on these and 
other remaining derived products outlined below in the next ten years. 
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Ozone 
For ozone assimilation, the main reason we are currently unable to use more measurements is 
that the retrievals from various sources as presently implemented, are inconsistent with each 
other. It was found that the retrieved total ozone from OMPS nadir mapper onboard NOAA-20 
was not consistent with those retrieved from OMI onboard the Aura satellite. The inconsistency 
could lead to a suboptimal ozone analysis. 

Direct assimilation of the ultraviolet measurements that are used in ozone retrievals is already 
being explored. The key to this is the development of a fast ultraviolet forward model as part of 
the CRTM (Liu et al. 2021). In the context of coupled systems, particularly for the regional 
application which will feature reactive tropospheric chemistry, future assimilation capabilities to 
better constrain lower-tropospheric ozone for air quality products should be developed. 

Scatterometers 
Scatterometers measure the back-scattered signal from a radar measurement of the ocean at 
three different view angles from which the sea state and then the wind speed and direction can 
be inferred. Usually, multiple solutions for the wind field are possible, and a priori information is 
required to choose between them. The contemporary approach in DA is to assimilate level-1 
measurements where possible. However, this requires a fast and accurate observation operator 
to produce simulated observations using the model background as input. Simulating backscatter 
measurement is still challenging; therefore, in GDAS, we currently assimilate level-2 
scatterometer-derived wind direction and speed. Very early work is being done at ECMWF, 
funded by EUMETSAT, to develop a forward operator and its adjoint to directly model the 
backscatter (S. Healy, ECMWF, 2024, personal communication). Work is also underway to 
make better use of higher-resolution scatterometer data, and efforts should be pursued to utilize 
data that is impacted by precipitation. 

Atmospheric Motion Vectors 
It is well established that the assimilation of tracer species such as ozone or water vapor in a 
four-dimensional DA system can cause increments in the wind fields through the so-called 
“tracer effect” (Peubey and McNally 2009). It seems to be a natural progression, therefore, to 
replace AMV-derived products (which are ultimately derived by tracking the radiance signals 
from clouds and water vapor) with the direct assimilation of the radiances themselves. This 
would have the advantage of circumventing the most challenging aspect of AMV 
characterization, namely the height assignment of the winds. An obvious first step would be to 
use the many water vapor channels of the MTG-IRS to infer time-resolved and 
vertically-resolved water vapor information. The use of the information in the cloudy radiances is 
more challenging and would first require an infrared cloudy radiance assimilation strategy to be 
implemented. It is probably fair to say that the replacement of AMV products with a direct 
radiance assimilation strategy in the next ten years is, at best, aspirational. In the meantime, 
incremental efforts toward optimizing the use of AMV products will be pursued, such as 
advanced techniques to thin or create super-observations and better account for uncertainties in 
height assignment. Additional developments such as the proposed variational Feature Track 
Correction (Hoffman et al. 2021) should be pursued. 
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3.1.5 Improved Use of Radar Observations 

3.1.5.1 Radar Observations and Quality Control 
NCEP has had real-time access to level-II radar data from the network of Weather Surveillance 
Radar-1988 (WSR-88D) Next-Generation Weather Radars (NEXRAD), which deploy 158 
Doppler radars and cover the United States. NCEP also receives Tail Doppler Radar (TDR) 
observations from NOAA aircraft in operations. Radar radial winds, reflectivity and Velocity 
Azimuth Display (VAD) winds are used to improve forecast skill in global, regional and hurricane 
DA systems. 

While the NEXRAD network provides reasonable coverage over the United States it still suffers 
from gaps in coverage. Such gaps can be ameliorated to a degree by expanding to include 
other networks. Such networks include (1) the Terminal Doppler Weather Radar (TDWR) 
network operated by the Federal Aviation Administration (FAA); (2) the Canadian weather radar 
network and (3) the Caribbean radar network. 

Using these real-time data in operational DA requires the data to be processed reliably and 
efficiently through rigorous data quality controls. Advanced radar data quality control (QC) 
techniques are developed and used in radar data processing systems at NCEP (Liu et al. 2016). 
However, with the implementation of the new radar scan strategies the QC algorithms should be 
adjusted and improved to resolve the data quality problem encountered in new volume scan 
modes. The current QC algorithm was developed for the WSR-88D S-band radar. Dealing with 
the QC problems in radar observations by C-band TDWR radars is a significant challenge. To 
properly handle the QC problems from the TDWR network, new QC algorithms should be 
developed. Furthermore, efforts are required to either develop a new QC algorithm or improve 
an existing QC algorithm to process Canadian or Caribbean radar data before assimilating it in 
NCEP's various DA systems. Assimilation of radial wind observations beyond the NEXRAD 
network has shown potential to include short-term forecasts in a recent global observing system 
experiment (Lippi et al. 2023) and should be explored. 

3.1.5.2 Radar Reflectivity Assimilation 

In regional NWP systems, 3D reflectivity is currently assimilated through a latent-heating 
method (Benjamin et al. 2016). During model integration, the latent-heat specification can be 
combined with a digital filter initialization (DFI), which reduces noise in the subsequent forecast. 
The latent-heat specification can also be used to initialize the NWP model without DFI with a full 
hour of latent heating and a time-varying temperature tendency based on sub-hourly radar data. 
This computationally-inexpensive approach promotes mesoscale circulations and/or 
convective-scale structures in regions of ongoing observed precipitation while suppressing 
development of these features in regions of radar coverage. The method can be implemented to 
global, regional and hurricane forecast systems to improve convective-scale feature 
initialization. 

Direct assimilation of radar reflectivity is challenging in a variational framework, because of the 
high nonlinearity of its observation operator and its close involvement with the complex 
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microphysics. A direct reflectivity assimilation method was recently developed within a 
GSI-based EnKF and EnVar framework. Reflectivity, rather than hydrometeor mixing ratios, is 
used as a state variable in an EnVar framework. This approach has the advantage of avoiding 
the need for the linear tangent or adjoint of the reflectivity operator (Wang and Wang 2017). The 
method relies on ensemble-based background error covariance to spread the impact of radar 
reflectivity to other variables. The direct reflectivity assimilation method may potentially improve 
storm scale assimilation as model resolution and ensemble member size increase. Future work 
into methods which relax parametric (i.e. Gaussianity) assumptions should be explored in order 
to continue to realize the benefits of reflectivity assimilation (e.g. McCurry et al. 2023). 

3.1.5.3 Radar Radial Wind Assimilation 

The QCed radial winds at elevation angles lower than 5o are currently super-obbed to 5o x 5 km 
resolution to reduce overall data volume, decorrelate observation errors, and reduce 
representativeness error. These super-obbed radial winds are then assimilated directly in the 
current regional DA systems. As resolution and model physics continue to improve, they may be 
assimilated with less super-obbing, though the impacts of correlated observation errors should 
be considered (e.g., Simonin et al. 2019). Fine-scale radial wind assimilation may potentially 
improve convective-scale forecasts. A demonstration of improved use of radial wind 
observations is documented in Lippi et al. (2019). 

In the absence of level-II radial winds, Velocity-Azimuth Display (VAD) winds will be assimilated 
as a supplement to provide high resolution wind vertical structure. The high temporal and 
vertical resolution VAD wind profiles have been derived from Level-II radar wind observations at 
NCEP. The temporal resolution is equal to the period of the radar volume scan, which is less 
than 10 minutes for WSR-88D radar. The vertical resolution is 50 meters. The international radar 
network can also provide VAD wind profiles to NCEP. However, instead of employing VAD 
winds, more radar radial wind will be included into the DA system as level-II radar data 
transmission capability grows (e.g. Lippi et al. 2023). 

3.1.5.4 Dual-Polarization Variable Assimilation 

The enhanced, dual-polarization capable WSR-88D radars offer greater details about the size, 
shape and type of hydrometeors. With this advantage, assimilation of dual-polarimetric radar 
data is expected to improve precipitation system initialization even further (e.g., Putnam et al. 
2021). The dual-polarimetric variables typically considered for assimilation include differential 
reflectivity ZDR, reflectivity difference Zdp, and specific differential phase KDP. To properly realize 
the advantages of assimilating dual-polarimetric observations, forward operators should be 
constructed in such a way that they are fully consistent with the model microphysics scheme. 
Further, it is likely that at least a double-moment microphysics scheme will be required to realize 
the full potential of these data (e.g. Jung et al. 2012). 

3.1.5.5 Tail Doppler Radar Data Assimilation 

Tail-Doppler Radar (TDR), also known as airborne doppler radar, observes the 3D hurricane 
structure with radial wind and reflectivity. After automatic quality control is conducted on the 
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aircraft, the TDR radial winds are transferred to NCEP. The radial winds are then thinned and 
assimilated in HAFS. Similar efforts to improve the assimilation of land-based Doppler radar 
data are also applicable to reconnaissance observations: reduced thinning/super-obbing as the 
forecast model improves, consideration of correlated errors, improved quality control, and 
expansion toward the assimilation of dual-polarimetric variables as airborne radar technology 
advances. 

3.1.6 Continuous Optimization 

The global observing system continues to change rapidly, meaning new processes and 
procedures need to be developed to more rapidly integrate new observations. Once things are 
integrated into operations, the work to make best use of the observations is never completed. 
There is no such thing as the “last mile” and “maintenance mode” in this context. The optimal 
use of observations is a function of all aspects of the system, which is ever evolving. For 
example, the introduction of a new observing system may render the utilization of other types of 
observations sub-optimal without additional, significant changes. Aspects of the assimilation of 
observations in an operational system requires a sustained effort to be resourced and 
maintained to continually optimize the system, including but not limited to observation error 
calibration, quality control decisions, and improved operator development. There is hope that 
aspects of this could potentially be automated through the integration of AI/ML-based 
technologies. 

Enhancement of Existing Observations 
1. Improved use of conventional observations – such as the use of 

screen-level observations in the global system or utilizing high-resolution 
radiosonde data; 

2. All-sky and all-surface radiance assimilation – use of satellite radiances in 
a variety of cloudy and precipitating conditions across the entire planet; 

3. Quality control and error assignment – ensure observation errors and 
quality control filtering procedures are optimized and evaluated continuously; 

4. Reduce use of retrievals – move from retrieved products to direct assimilation 
of observations including for ozone and derived motion vectors; 

5. Improved use of radar data – reflectivity, radial wind, and dual-polarization 
observations from both ground-based and airborne radars present unique 
challenges for their proper use. 
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3.1.7 Improved Use of Observations with JEDI 
The coming decade will see the transition of operational DA from GSI to the JEDI framework. 
This will potentially give a number of advantages when assimilating new observations and 
improving the use of existing systems. Together with the other JCSDA partners 
(NOAA-NESDIS, NOAA-OAR, NASA, US Navy, US Air Force) plus the Met Office, the JEDI is a 
joint project using the same core system but configurable and expandable according to 
individual centers’ needs. An obvious advantage of this is the ability to share configurations and 
code innovations and potentially speed up the implementation of new systems. 

The JEDI framework is built around two key ideas: separation of concerns (which, among other 
advantages, has the potential to simplify the implementation of coupled modeling and DA) and 
generic algorithms that may be configured for multiple uses and instruments without duplicate 
code. The separation of concerns concept is intended to allow different components, e.g., 
forward operators and minimization algorithms, to be interchanged and compared within the 
same framework. Some early work on the intercomparison of radio-occultation operators has 
benefitted from this concept. The standardization of data storage (both input and output) 
through the IODA framework has also allowed the development of common tools for pre- and 
post- processing as well as making interrogation of these data easier. 

These advantages do not negate what is often the most crucial element in testing and 
implementing changes in the DA system, which is the need for multi-month testing of the full 
system to demonstrate statistically significant forecast impact. 

The ability of JEDI to have a positive impact on implementation ease, speed, and effectiveness 
will crucially depend on how these new systems interact with the operational side of the NWS 
forecasting endeavor. At the current time, it is much more straightforward to get a change in 
scripting or configuration files approved for operational implementation than a change to the 
(mostly Fortran) code. When new instruments become available, the GSI code needs to be 
modified in various places to read, process, and quality control the data. With JEDI (in theory), 
the existing high-level applications within the code need only be called with new configuration 
files to achieve the same effect. But we should also acknowledge that this transition will require 
the acquisition of new skills and knowledge from both the development and operational sides, 
including the adoption of the Agile change management processes that are the cornerstone of 
the JEDI project. 

3.2 New and Upcoming Observations 

3.2.1 In Situ and Non-Satellite Platforms 

In situ observations, such as from surface stations and radiosonde balloons, have been a key 
component of operational DA at NCEP/EMC for decades. In addition to the enhanced use of 
existing observations described above, there are a number of new and upcoming in situ and 
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non-satellite remotely-sensed observations that have potential for use in operational NWP. 
These include but are not limited to: 

● Super-pressure balloons (SPBs; Loon balloons, e.g. Lukens et al. 2023) that could be 
used for both assimilation and validation of winds in the stratosphere; 

● Long-duration, controllable balloons for multiple profiling during a single mission, 
targeting regions void of radiosondes (e.g. such as those from WindBorne); 

● Uncrewed drone systems (Saildrones; uncrewed aircraft vehicles; etc) that contain 
observation payloads; 

● Observations derived from the renewable energy sector, such as wind turbine power, tall 
tower, and turbine nacelle; 

● Crowdsourced observations, such as smartphone pressure observations, and low-cost, 
Internet of Things (IoT) networks are an emerging source of environmental data; 

● Additional surface observations from professional-grade personal weather stations, 
government/academic mesonets, and private sector networks; and 

● Web cameras (Carley et al. 2021). 

Some of the above have already reached high readiness levels and even operational utilization. 
For example, SST observations from marine autonomous vehicles (Saildrones) are already 
operational in the NCEP GDAS to help constrain near-sea surface temperature (NSST). The 
atmospheric observations from the same platform are undergoing development and will be 
included in operational applications in the coming years. This is an area of development that is 
rapidly growing that will come with significant challenges such as quality assurance/quality 
control, privacy (for things like smartphone data, observations from vehicles), and potentially 
complicated forward operators for assimilation. 

3.2.2 Satellite Radiances 

There will be abundant meteorological satellites with legacy and innovative instruments 
available to the NWP community in the next few decades. The JPSS and GOES programs from 
NOAA will continue their next series with the same set of instruments and provide 
measurements for the next two decades. The future low-Earth orbit environmental satellites 
from NOAA's Near Earth Orbit Network (NEON) program, a collaborative mission with NASA, 
will supplement and eventually replace JPSS in the 2030s. The first stage of the NEON mission 
will launch QuickSounder, a small satellite with an ATMS sensor, the same as those flown on 
the JPSS series, and a new Sounder for Microwave-Based Applications (SMBA) instrument. 
The innovative GeoXo satellite system with hyperspectral sounding capability will expand 
observations of the GOES-R series from geostationary orbit and become operational in 
mid-2030. The continuation of the MetOp and Meteosat satellite series from EUMETSAT will 
carry the traditional sensors from their predecessors and new sensors such as Ice Cloud Imager 
(ICI) and Infra-Red Sounder (IRS). A detailed timeline of various satellite programs for NWP 
applications is illustrated in Figures A1-A3, and instruments onboard and their potential usage in 
the NWP systems are listed in Tables A1-A4. 
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We categorize these observations in terms of their implementation priority for operational NWP 
systems, except for data not allowed to be used due to security concerns. The highest priority 
will be the observations from the instruments on board the extended satellite programs, such as 
the US JPSS and GOES series and the European MetOp and Meteosat Series that are already 
assimilated in the current NWP systems (legacy sensors). The second priority will be given to 
new sensors that provide additional information to the observing system and require minimum 
developments. New sensors that require significant scientific development will be ranked third. 
The lowest priority will be given to sensors with unknown or questionable quality or with 
potential scientific issues complicating their usability for NWP. 

3.2.2.1 Microwave Radiances 

Satellite MW radiances were initially assimilated only under clear-sky conditions in the NCEP 
operational system from 1995. They have been assimilated in cloudy regions over the ocean 
since 2016 and extended to precipitation conditions in 2022. All-sky assimilation builds on many 
developments at NCEP over the last 20 years. Much of the breakthrough in using MW 
radiances under all-sky conditions comes from improvements in multiple DA components, 
including the radiative transfer modeling, representation of moist physical processes in the 
forecast model, situational-dependent observation and background error covariance estimation, 
and assimilation algorithm. 

So far, the GDAS all-sky framework includes MW radiances sensitive to temperature, moisture, 
and hydrometeors from AMSU-A and ATMS. All AMSU-A channels (23, 31, 50-57, and 89 GHz) 
and ATMS, with the additional high-frequencies 165 GHz and 183 GHz sounding channels, are 
assimilated over the ocean in the all-sky framework and under clear-sky conditions over 
non-ocean surfaces. The current framework gives us a good foundation to prepare for 
assimilating radiances from the continuing legacy ATMS and a more advanced Microwave 
Sounder (MWS) on board the next generation of satellites. In the meantime, we are extending 
the use of data over non-ocean surface types. The 183 GHz humidity-sounding channels are 
not particularly sensitive to the surface. Potentially, they can be assimilated over various surface 
data types. The MW 183 GHz channels are good candidates for extending the all-sky 
framework to an all-sky and all-surface framework. 

We have not used radiance data from MW images such as GMI and AMSR-2 in the operational 
GDAS. The data from imagers are sensitive to the surface and total column water vapor across 
all sensor frequencies. Sensitivity to hydrometeors varies enormously with frequency. The 
low-window frequencies (5-20 GHz) give information on the column-integrated rainwater. The 
mid-window frequencies (30-90 GHz) are more sensitive to cloud liquid water. There is also 
sensitivity to scattering from large frozen particles (snow and graupel) around 90 GHz. The 
humidity-sounding capability is found at higher frequencies, around 183 GHz, with stronger 
sensitivity to large frozen particles. Efforts to use MW image radiances from GMI and AMSR-2 
in GDAS are underway. The experiences will better prepare us for future sensors such as 
AMSR-3 and MWI, which are scheduled to be launched in 2024 and 2025, respectively. 
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EUMETSAT will include an Ice Cloud Imager (ICI) on its next generation polar satellites, which 
will observe selected frequencies in a sub-millimeter range between 183 GHz and 644 GHz. 
This part of the MW spectrum is underutilized in NWP applications. It contains water vapor and 
oxygen absorption lines that provide sounding capability and window channels offering 
additional information on clouds and precipitation. Uniquely, the sub-millimeter frequencies 
provide information about cloud ice particles and are strongly sensitive to ice water content and 
particle size distribution. 
Table A1 summarizes instrument data selected for enhancing the operational DA systems for 
the coming decades. MW instruments available for NWP, which cover the spectra from 
microwave, millimeter-wave, and submillimeter-wave, will provide extensive information 
regarding surface and atmospheric temperature, moisture, winds, as well as clouds and 
precipitation. The expanded channels in higher frequencies (Fig. A4) also enables ice cloud 
profiling. The main features of sensors with new frequencies from the next-generation satellites, 
which have higher priority for assimilation, are as follows: 

Microwave Sounder (MWS) will replace AMSU-A and MHS on the current MetOp 
satellites. The spectral characteristics of MWS are enhanced, compared to AMSU-A and 
MHS, by adding two temperature and three humidity-sounding channels. The new MWS 
channel at 229GHz (Table A5) will provide information on cirrus clouds, which improves 
humidity-sounding information. 

Microwave Imager (MWI) is a conically scanning radiometer with spectral coverage from 
18 GHz up to 183 GHz. It has heritage from MW imaging missions such as SSMIS, GMI, 
and AMSR-E. The innovative channels in the oxygen band near 50-60 GHz and 118 Hz 
provide information on weak precipitation and snowfall. MWI Channels at 165 and 183 
GHz are less sensitive to the surface and provide information on water vapor profiles 
and snowfall information, enabling cloud slicing. 

Advanced Microwave Scanning Radiometer 3 (AMSR-3) is a successor to the conically 
scanning AMSR-2. There are three new high-frequency channels for moisture and 
snowfall. Additional channels at 10 GHz with reduced noise levels will provide better sea 
surface temperature information. 

Ice Cloud Imager (ICI), also a conically scanning passive imager, is the first MW 
radiometer designed for remote sensing of ice clouds, providing cloud penetration 
capability and sensitivity to a significant portion of particle size range not covered in the 
millimeter-wave or the IR range. Channels near the weak absorption lines around 325.15 
GHz and 448 GHz provide information on cloud height. 

3.2.2.2 Infrared Radiances 

The current constellation of infrared instruments is currently divided into four main categories. 
In polar (low-Earth) orbit, there are the hyperspectral sounding instruments (IASI, CrIS, AIRS) 
as well as imaging filter spectrometers (AVHRR, VIIRS) whose primary role in DA is cloud and 
surface characterization. The imaging filter spectrometers have their analogues in geostationary 
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orbit (SEVIRI, ABI, AHI) which allow for time-resolved observations of the planet including the 
derivation of wind products. The fourth group of hyperspectral geostationary sounders, 
combining high spectral resolution of the polar sounders with the temporal information of the 
geostationary imagers, is currently represented by the Chinese Geostationary Interferometric 
Infrared Sounder (GIIRS). 

The launch of EUMETSAT’s MetOp Second Generation, currently scheduled for 2025 will carry 
the next generation IASI, IASI-NG. IASI-NG will have similar spatial resolution to IASI, but will 
have improved noise characteristics as well as twice the spectral resolution (and hence twice 
the number of channels - 16921). Also on MetOp Second Generation, the AVHRR will be 
replaced with METimage. This will have 20 channels spanning from the visible to the thermal 
infrared frequencies of the spectrum, as opposed to the 4 channels on AVHRR, with a spatial 
resolution improved from 1.1km to 0.5km. As with MetOp, the METimage on Metop-NG will 
provide sub-field of view context for IASI-NG observations as well as providing important 
information on ocean temperature, ocean color, land and ice properties and atmospheric motion 
vectors at the poles. 

EUMETSAT’s Meteosat Third Generation (MTG) series started with the launch of MTG-I1 on 
December 13 2022, initiating its 12-month commissioning period. The -I (imager) series of 
satellites will carry the Flexible Combined Imager (FCI), the successor to SEVIRI. The FCI will 
have 16 channels from the visible to the thermal infrared with a channel-dependent spatial 
resolution of 0.5 - 2.0km (SEVIRI has 12 channels with 1.0 - 4.8km resolution). 

MTG will also comprise the -S (sounder series of satellites), with the first expected to be 
launched in late 2024. The MTG-S series will carry the MTG-IRS (infrared sounder). This will be 
a hyperspectral sounder with 1720 channels at spectral resolution of 0.625cm-1 and a spatial 
resolution of 4km at the sub-satellite point. The volume of data expected from MTG-IRS has 
resulted in the decision to distribute a spectrally-compressed dataset to NWP centers through 
principal components. 

A similar concept is under development at NOAA in the form of the Geostationary Extended 
Observations) GeoXO mission, with a currently scheduled first launch in 2032. The GeoXO 
sounder, GXS, will have a similar design to MTG-IRS with 1550 channels and a 0.625cm-1 

spectral resolution. There will also be an enhanced imager, GXI, with 18 channels - two more 
than the current ABI - and enhanced spectral resolution. 

3.2.3 Small Satellites and CubeSats 

CubeSat and SmallSat MW sounder missions (Fig. A5) offer the possibility to provide a higher 
temporal sampling. These MW sounders with fewer frequencies (see Table A8) than the 3-orbit 
backbone developed and flown on SmallSats and CubeSats hold promise. They could 
potentially complement the backbone MW sensor configuration. Several missions such as 
TEMPEST-D and TROPICS have been launched or planned. From the NWP perspective, efforts 
are required to ensure the NWP can benefit from these novel observations: 
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● Further studies are needed to define an ideal MW sounder constellation that includes the 
backbone and supplemental missions. These studies should have the selection of 
frequencies for augmentation and different orbits. 

● Need to demonstrate effective calibration and validation capability for quality assurance 
● Demonstrate ability to handle the challenge of shorter mission lifetimes. It generally 

takes at least six months to two years to use data from a new satellite operationally after 
launch. With the shorter lifetime of SmallSats and Cubesats, the NWP centers need to 
be engaged in the characterization and quality assessments for these missions to 
ensure data will be assimilated in a timely manner. 

● As with all observations, NWP centers require data received with minimal latency (less 
than 10 minutes for some nowcasting and short-range weather forecasts). 

The use of smallsat data in operational NWP will require additional attention to the 
implementation procedure outlined in Kleist et al. (2023). This will involve additional 
responsibilities on the data providers, the radiative transfer model team, the development team 
at EMC and NCO. 

Data provider responsibilities: 
1) Demonstrate value for NWP. 
2) Provision of the instrument and launch. 
3) Detailed characterization of the instrument well in advance of launch (six months or 

more). In particular, instrument spectral response functions need to be characterized and 
communicated for inclusion in the fast radiative transfer models (currently CRTM and 
RTTOV). Bespoke radiative transfer models are not acceptable. 

4) Precise requirements for instrument noise and stability will be channel dependent, may 
vary with time and may depend on other factors (trade-offs with field of view size, for 
example), but for each individual instrument these requirements need to be agreed in 
advance. 

5) Timely delivery of data to NCEP. Data needs to arrive within defined thresholds for the 
operational application. The data should be provided through an established data 
exchange mechanism e.g., GTS, NOAA PDA (or replacement such as established cloud 
delivery mechanism), EUMETCast or equivalent. Data should be provided in BUFR 
format as that remains the WMO standard for observational data exchange. 

6) Data should be made available to the wider community. The success of the international 
NWP modeling efforts rely on the free exchange of observations between countries. As 
the NWP forecasts from our international partners are used by NOAA forecast offices, it 
would be counterproductive to pursue exclusive use policies. 

Radiative transfer model team responsibilities: 
1) The updating of radiative transfer model (CRTM in our case, but RTTOV should also be 

included) coefficients is currently performed by the JCSDA CRTM team and is therefore 
external to EMC. It is a requirement that the RT team coordinate with the data providers 
to obtain the instrument spectral response function; to produce the fast model 
coefficients and to deliver to EMC. 
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EMC team responsibilities: 
1) Ingest data provided and made available for DA testing. 
2) Evaluate the data by running in the DA system in passive mode. Ensure the data quality 

is as expected and modify observation errors as appropriate. Ideally this should be done 
in the operational system if changes can be provided in advance (see NCO 
responsibilities below). 

3) Run a data impact study to ensure non-negative impact from the data. Current policy is 
to perform this for a minimum of two months. Sufficient resources (workforce and 
computation) need to be made available for this. If resources are not available, this 
requirement may be relaxed by senior management decision (this may be appropriate if 
multiple identical instruments are launched over time). Alternative mechanisms to assess 
value/impact may also be pursued (FSOI, ensemble spread reduction, etc.). 

4) Provide code and configuration changes to NCO to implement through a git tag. 

NCO responsibilities: 
1) As we move to more frequent updates to the observing system, new mechanisms and 

policies to allow more frequent updates to the assimilation system need to be developed. 

3.2.4 Atmospheric Composition 

While there are not currently any observations of aerosols or atmospheric composition 
assimilated in the NCEP production suite besides ozone retrievals, there are a variety of 
observations available now and in the near future from both LEO and GEO platforms. With the 
exception of AOD (from GOES ABI), all other observations relevant to atmospheric composition 
are currently only on LEO platforms. Existing LEO platforms such as VIIRS, TROPOMI, and 
OMPS provide retrievals of AOD and various trace gases such as nitrogen dioxide (NO2). Given 
the nature of the instruments, most composition-related observations are only available during 
the daytime due to the need for passive shortwave from the sun. One main limitation of regional 
air quality DA currently is the lack of observation coverage, as most of these LEO platforms can 
only provide observations over CONUS once per day. The Tropospheric Emissions: Monitoring 
Pollution (TEMPO) instrument, launched in 2023, will provide hourly observations of AOD and 
multiple trace gases over the United States. TEMPO, combined with Sentinel-4 (Europe) and 
GEMS (E. Asia), will form a constellation of geostationary air quality relevant observations 
across the globe. For more information on current and future satellite-based atmospheric 
composition observations, please refer to Frost et al. (2020). 

3.2.5 Ocean, Land, Ice, and Waves 

The follow-up missions to nadir-looking altimeters consist of Sentinel-3C, Sentinel-6B, CRISTAL 
A/B and Sentinel-6 NG, ensuring a minimum of 3 operational nadir looking altimeters at all time 
throughout the next decade. In addition to the above, the Surface Water and Ocean Topography 
(SWOT) mission was launched in December 2022. Unlike previous ocean topography missions, 
SWOT will observe the ocean circulation at an order of magnitude finer resolution than the 
current missions. The altimeter instruments onboard these missions will provide observations of 
significant wave height, absolute dynamic topography and sea-ice freeboard. 
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The maturation of the use of the Visible Infrared Imager Radiometer Suite (VIIRS) has opened 
up new opportunities for the study of the cryosphere. This technology will enable the DA 
process to better constrain the surface sea ice temperature and its interior thermodynamics by 
assimilating the retrieved sea ice surface temperature or brightness temperature observations. 
This will lead to a more accurate representation of the ice-air interface. 
At the time of writing, the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) 
mission, initially set to conclude in mid-2023, is still ongoing. The European Space Agency 
(ESA) Next Generation Gravity Mission (NGGM) is a continuation of GRACE-FO’s low-orbit 
satellite train. While gravity missions have been underused in the past, the advent of a mature 
coupled modeling and coupled assimilation infrastructure will facilitate the development of the 
multi-domain (ocean, land, land-ice, atmosphere, etc.) forward operator for the simulation of low 
orbit trajectory of satellites such as NGGM. The information content of gravity missions will allow 
better constraint of coupled model’s mass balance. 

The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is set to launch in February 
2024 with the goal of observing and studying the ocean and atmosphere. It will gather 
information on biogeochemical water constituents and atmospheric parameters such as 
aerosols and clouds. This information will provide added insight into the upper ocean 
biogeochemistry that affects the light penetration depth and upper ocean heat content as well as 
supplement VIIRS aerosol optical depth observations for use in atmospheric constituent DA, 
and even provide information on surface albedo and normalized difference vegetation index 
(NDVI) for land surface applications. 

Global Navigation Satellite Systems Reflectometry (GNSS-R) is an emerging area for various 
components of the Earth system including ocean altimetry, ocean-surface wind speeds, soil 
moisture, and surface vegetation. In addition to recent missions such as CYGNSS, there are 
some private sector vendors (including those from which government agencies are purchasing 
data for operations) that are already producing products from GNSS-R that may be of relevance 
for DA in some of the aforementioned areas. While initial efforts could focus on the integration of 
such L2 products (e.g. ocean surface wind speeds, soil moisture), forward-looking 
developments focused on advanced forward operators for use within coupled systems should 
be explored and exploited. 

3.2.6 Space-based Lidars and Radars 

Observations providing 3D information of clouds and precipitation from the space-borne active 
instruments on board CloudSat and CALIPSO have been available since 2006 but are now 
rapidly approaching end-of-life. New efforts, such as EarthCARE, will be launched in 2024 and 
beyond. Even though radar and lidar combined provide detailed clouds and precipitation, there 
are still many challenges to using this information effectively in the DA system. Some 
encouraging studies have been performed using these data at ECMWF (Janisková 2015; 
Fielding and Janisková 2020). Most crucial to the development of assimilation systems for these 
measurements is the availability of accurate radiative transfer models of these active 
measurement systems. The forecast model also needs a reasonable representation of the 
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physical processes related to the observations (e.g., moist processes related to large-scale and 
convective cloud formation). Finally, the development of appropriate QC, error models, and bias 
correction schemes is required. The development of forward models in the Community Active 
Sensor Module (CASM) within the CRTM framework is a crucial first step in developing active 
sensor assimilation at EMC. Evaluation of these forward models within the EMC DA system will 
lead to developing an appropriate error model, quality control, and bias correction procedures 
and providing crucial information to feedback to both the radiative transfer model and forecast 
model developers. 

The ESA launched the Aeolus mission on 23 August 2018, an initial foray into operational 
production of space-based Dopper wind lidar. One of the goals of the mission was to provide 3D 
wind data from the Mie and Rayleigh channels of the Atmospheric LAser Doppler INstrument 
(ALADIN). 3D wind observations from space, particularly in the tropics, has long been identified 
as having potential for improving operational NWP forecasts. Several NWP centers are 
operationally assimilating the data with varying degrees of documented improved forecast skill 
(see Rennie et al. 2021 as one example). Initial development activities were carried out for 
NCEP systems to demonstrate the potential benefit (Garrett et al. 2022; Marinescu et al. 2022). 
However, the assimilation of the observations was never implemented into operations owing to 
the short mission life that was expected and other external factors. This is a good example of a 
need for more rapid development and deployment of such capabilities. It is very likely that there 
will be similar, follow-on missions for space-based lidar winds given the current and ongoing 
success of Aeolus. 

3.2.7 WindBorne Balloons and Uncrewed Aircraft System (UAS) 
WindBorne balloons provide a low-cost platform for collecting surface-to-stratosphere 
meteorological data in underserved areas.It offers long-duration observations, high-altitude data 
collecting, global coverage, and fine-scale resolution. These observations could be employed in 
DA to improve more accurate and timely weather forecasts. Early trials have already been 
completed with promising results for predictions of tropical cyclones and atmospheric rivers. 
NOAA/NWS is nearing completion of a plan to begin procuring such data for operational 
utilization. 

UASs are increasingly being used to collect data at NOAA. These platforms can capture 
important, high-accuracy, time-sensitive data in regions and scenarios that may otherwise be 
hard to reach. UAS can give high-resolution observations in pre-event zones as well as at sea. 
Such activities have ramped up significantly in recent years. There is now a UxS Research 
Transition Office within NOAA as well as significant efforts within the NOAA Office of Marine and 
Aviation Operations (OMAO). As an example, the FY21 Use Report for NOAA UAS documents 
the support across NOAA and highlights several significant programmatic developments. 
Observations from such platforms are going to continue to expand in availability for use in 
operational DA systems. 
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Incorporating Emerging Observing Systems 
1. Embracing remote controlled in situ observing platforms – balloons, 

drones, and other platforms to provide complementary information; 

2. Crowdsourcing observations – internet of things, personal weather 
stations/mesonets, and renewable energy derived observations; 

3. New Products – leveraging AI processing to derive novel products from visible 
imagery or other data sources; 

4. Next-generation satellite instruments – new microwave and infrared sensors 
aboard future polar-orbiting and geostationary missions to replace legacy 
platforms; 

5. Small satellites and CubeSats – can provide additional information but 
present unique challenges due to their relatively short useful lifetimes; 

6. Earth system DA observations – extending DA capabilities to the ocean, 
land, atmospheric composition, etc. requires the use of observations of all 
aspects of the Earth system, not just the atmosphere. 

3.3 Algorithms and Enhancements 

3.3.1 Algorithms 

The mathematical framework by which the analysis is derived, whether through cost function 
minimization or more direct computation, plays a primary role in the character of the analysis. 
Many of NCEP’s applications currently use the GSI framework containing a variational solver 
(see Kleist et al. 2023 for details about the current algorithm usage at NCEP). The construction 
of the variational cost function has the advantage of allowing additional terms, such as 
constraints and online bias correction. This was part of the appeal of the extended control 
variable form of the hybrid DA system. It allowed the continued use of the 3DVar system already 
in place while incorporating the advantages of flow dependence and multivariate correlations 
that ensembles provide. It was easily extended again to include 4D information with the 
4DEnVar. See Bonavita et al. (2017) for details concerning many of the DA algorithms 
discussed in this section. 

Another 4D algorithm, 4DVar, is favored by some other operational centers and has been in use 
for decades. While 4DEnVar constructs its time dependence by sampling the ensemble 
throughout the assimilation window, 4DVar relies on tangent linear (TL) and adjoint (AD) models 
to represent the time evolution in the assimilation window. This results in additional 
maintenance; whenever the nonlinear model is updated, the TL and AD models may need 
updating for consistency. There are additional complications regarding the linearization of 
physical parameterizations, particularly in handling triggers and on-off switches. Some centers 
have adopted strategies of either utilizing simplified physics in the TL and AD integrations as 
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well as using perturbations models in place of full TL models for the dynamics. Looking to the 
future with coupled Earth system modeling and assimilation, creating fully coupled TL and AD 
models to enable more strongly coupled 4DVar assimilation is a difficult task. Within this context, 
some viable alternatives to the full TL have been proposed and are being pursued such as the 
Local Ensemble Tangent Linear Model (Frolov and Bishop 2016; Frolov et al. 2018), hybrid TLM 
(Payne 2020), as well as leveraging of emulation through machine learning. This is ripe for 
exploration, particularly within the context of coupled assimilation (discussed later). 

The incorporation of ensembles into the global and regional atmospheric solvers has been 
invaluable and will continue to be utilized for the foreseeable future. Ensembles add a great deal 
of skill due to the characterization of flow dependence and multivariate information in the 
background error, however this comes at the computational cost of running many additional 
forecasts. There is typically also a maintenance cost as many ensemble-based algorithms 
require a separate ensemble perturbation generating system apart from the deterministic solver. 
One alternative to using EnKF variants to update the ensembles that is not yet utilized by NCEP 
is the concept of ensemble of data assimilations (EDA). Similar to having a deterministic 
system, a suite of (possibly) lower-resolution perturbed versions of the parent system are run. 
Since each member of the EDA system can be run independently, this type of system is highly 
scalable. Having both the lower resolution and higher resolution DA using the same system can 
also increase maintainability since upgrades can be more easily included in both the 
deterministic system as well as the EDA. There are many additional alternatives to 
variational-based hybrid assimilation schemes, including the mean-pert method, 
Ensemble-Variational Integrated Lanczos, and block-Lanczos EDA. A thorough review of hybrid 
variational and ensemble-variational schemes can be found in Bannister (2017). 

The discussion thus far has been focused on algorithms that generally assume Gaussian 
distributions. As models continue to increase in resolution and complexities, nonlinearities and 
non-Gaussianities will become increasingly important to represent, both in the model states as 
well as the observation operators. Though there have been attempts to represent different types 
of distributions in existing algorithms (Dee and da Silva 2003; Fletcher and Jones 2014, Yang et 
al. 2020), increasing focus has been given to particle filters, which are able to capture 
nonlinearities that other variational and EnKFs typically cannot. It has been difficult, however, to 
apply pure particle filters in geophysical applications (Snyder et al. 2008), especially with the 
number of particles needed to represent the nonlinearities accurately. With typically a much 
larger number of observations than particles, the weights of the particles tend to collapse 
around one solution and resampling is required. Other techniques borrowed from existing DA 
algorithms, such as localization (Poterjoy 2016), have been applied in particle filters to aid 
against collapse, but this is an ongoing challenge in applications such as NCEP’s. Initial tests 
are already underway with a GSI-based localized particle filter application for use with a 
prototype version of the HAFS. Demonstrations within operational-like systems have been 
pursued for global NWP with some success (Potthast et al. 2019). A review of particle filters for 
high-dimensional problems including extensions to EnKF and variational hybrid variants can be 
found in van Leeuwen et al. (2019). 

NOAA/NWS/NCEP/EMC DA Strategy and Development Plan 35 



NOAA’s National Weather Service Data Assimilation Strategy 

The atmospheric applications have traditionally been at the forefront of DA algorithm innovation. 
However, more traditional algorithms, such as 3DVar, still have a role to play in many systems. 
Several applications within the NCEP production suite are evidence of this, such as 
3DVar-based ocean DA (GODAS and RTOFS-DA), initial aerosol optical depth and constituent 
DA, and initial OI-based snow assimilation to initialize land states. However, in the case of each 
of the aforementioned applications, work is already underway to develop hybrid-EnVar and/or 
EnKF-based assimilation components to best leverage ensemble-based information for 
prescribing background errors. As will be described elsewhere, there is also a push toward 
coupled Earth system assimilation, driving a need for better coordination and consolidation. The 
leveraging of an ensemble generated from a coupled model integration (e.g. truly coupled 
perturbations) opens many avenues for exploitation across media within a coupled assimilation 
system. 

The JEDI framework will provide access to a variety of algorithms and general flexibility (for both 
variational and ensemble-based approaches) in terms of configuration for application-driven 
needs. The framework already allows for multiple configurations of variational and hybrid 
ensemble-variational solvers, multiple minimization options for variational solvers, Ensemble 
Transform Kalman Filter updates, and preliminary work to allow for EDA. However, as is already 
being demonstrated, it is possible to use the same underlying infrastructure to perform flexible 
configuration of assimilation schemes for very different applications. 

3.3.2 Background Errors and Algorithm Enhancements 

The choice of algorithm in a DA system is crucial to its performance, but within the same 
algorithm, there are many means by which to improve skill. For example, the analysis is 
sensitive to the specification of errors for the background, observations, and prediction model. 
The background error covariance matrix provides spatial and intervariable correlations, 
determining the structure and magnitude of the observation impact. However, we are often 
forced to make assumptions about these statistics because of the overwhelming size of the 
covariance matrix and the fundamental limitation on knowing the true state of the Earth system. 
See Bannister (2008a,b) for an overview of previous background error constructions at many 
operational centers. 

NCEP has traditionally used the NMC method (Parrish and Derber 1992) to estimate 
background error statistics. This method of lagged pair forecasts has been a mainstay in NWP 
across the globe in the decades since its first usage, though recently estimation through 
ensemble perturbations has become increasingly prevalent. The implementation of GFSv16 
used ensemble perturbations rather than lagged forecast pairs for its background error 
generation, but the method of background error application remained the same. Improvements 
to the estimation of the background error statistics can continue to be pursued, for example by 
adding a seasonal dependency. However, as applications increasingly rely on dynamic 
ensembles and hybrid methods, improved representation in the static covariances will have 
reduced benefit and lower return on development investment. 
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Spatial correlations in many of NCEP’s applications are defined by recursive filters (Purser et al. 
2003a,b). These filters provide a good approximation to a Gaussian distribution and have the 
ability to include anisotropy as well, however they are hard to parallelize due to their sequential 
application. With increasing analysis resolution, the lack of scalability of the recursive filter 
quickly becomes a bottleneck. Spectral-based and wavelet correlations are additional 
approaches that also have the advantage of being easily incorporated into a multiscale 
assimilation approach. While the aforementioned methods for spatial correlations rely on 
structured, orthogonal grids, the B matrix on an Unstructured Mesh Package (BUMP1) is defined 
in such a way that it can be used on both structured and unstructured grids. Already 
incorporated into the JEDI framework, BUMP performs its most costly computations on a 
sampled subgrid and then interpolates back to the chosen grid. BUMP’s grid-agnostic approach 
is convenient, the extra interpolation step may introduce a nontrivial computational cost. On the 
other hand, the recursive filter has served operational DA admirably well for nearly two decades, 
but as our computational grids continue to increase in size we are encountering limits of 
scalability. 

A new approach, known as the multigrid beta filter (Purser et al. 2022), has emerged as an area 
of focus owing to its attractive combination of computational efficiency and fidelity with 
covariance modeling. The multigrid beta filter algorithm leverages the compact support from the 
use of a beta function and constructs the quasi-Gaussian response through the application of 
successive generations of filter grids, from fine to coarse scales. Together, the beta filter with 
compact support and the multigrid algorithm yield a highly scalable and efficient approach to 
background error covariance modeling, especially relative to the recursive filters, which have 
effectively infinite support and are applied sequentially. The multigrid beta filter is applied across 
successive grid generations (Fig. 7), during the minimization of the cost function. Simple single 
observation tests that exercise all aspects of the variational minimization have been done to 
compare scalability between the recursive filter and multigrid approach. As expected, the 
multigrid beta filter depicts much improved scaling as processor count increases relative to the 
recursive filter (Fig. 8). 

Figure 7: The steps in the application of the multigrid beta filter algorithm. From Fig. 3 of Purser 
et al. (2022). 

https://jointcenterforsatellitedataassimilation-jedi-docs.readthedocs-hosted.com/en/latest/inside/jedi-comp 
onents/saber/theoretical_documentation.html 
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Figure 8: Time, in seconds, taken for a single iteration with the multigrid beta filter (MGBF; blue) 
and recursive filter (RF; red) as a function of the number of processor elements (PEs). Also 
shown is the ratio of recursive filter and multigrid beta filter times (RF/MGBF; black). Adapted 
from Table 2 in Purser et al. (2022). 

As spatial resolution increases, we need to reevaluate portions of the algorithms that are no 
longer appropriate for finer scales. Representations of balance in the background error have 
traditionally focused on large-scale geostrophic or hydrostatic balances, considering mainly the 
wind and mass components. Even with atmospheric models incorporating non-hydrostatic 
prediction, the DA components have remained largely hydrostatically defined. Caron and Fillion 
(2010) found that the prescription of linear geostrophic balance assumptions in the background 
error are less representative as the intensity of precipitation increases. There has been some 
exploration in defining different balance and variance statistics for precipitating and 
non-precipitating areas (Montmerle and Berre 2010) as well as incorporating additional control 
variables to represent non-hydrostatic processes (Wang and Wang 2021). Further, with the 
advent of hybrid ensemble methods and their application at the convective-scale (Gustafsson et 
al. 2018), it is conceivable that comparatively complex representations of balance in the 
background error may be superseded by the inclusion of ensemble covariance. More research 
is needed on this topic. 

3.3.3 Multiscale Assimilation 

Multiscale analysis capabilities have been highlighted as a priority research topic across 
operational centers (Gustafsson et al. 2018), especially as our Earth system prediction systems 
continue to increase in spatiotemporal resolution. With these systems, it is critical that our DA 
algorithms also contain the ability to simultaneously analyze all scales of motion present in our 
observation network that are also resolvable by our models. Historically this has been 
challenging, especially at the convective-scale (≤ 3 km) when trying to assimilate observations 
that are often considered to be high resolution owing to their spatiotemporal density, such as 

NOAA/NWS/NCEP/EMC DA Strategy and Development Plan 38 



NOAA’s National Weather Service Data Assimilation Strategy 

Doppler radar radial winds, alongside those that are assumed to be rather coarse, like 
rawinsondes. In the context of traditional variational assimilation methods, typically formulated in 
model space, the correlations in the background error are typically associated with synoptic 
scales, thus making the information content in dense observation networks difficult to extract 
and often ignored. Past research has attempted to address this by running multiple passes with 
a variational solver, with each successive pass having shorter decorrelation lengths that are 
often decided a priori (Xie et al. 2011; Gao et al. 2013; Xu et al. 2016). 

With the present era of hybrid ensemble-variational techniques, the inclusion of ensemble 
information improves the resolution of the background error covariance, assuming the ensemble 
covariance is of the same resolution as the high-resolution analysis. However, with increasing 
resolution comes additional degrees of freedom as we expand the spectrum of resolvable 
atmospheric phenomena. In order to accommodate the additional degrees of freedom, research 
suggests that we may need a minimum of 200 members at the convective-scale (Necker et al. 
2020). At present, our high resolution prediction systems only have enough computational 
resources to allow for a fairly limited set of ensemble members, on the order of 30-40 members. 
To address the issue of rank deficiency, localization is employed, typically a Gaussian-shaped 
function that truncates long-distance correlations to zero to minimize spurious analysis 
increments. While localization helps with issues related to rank deficiency, it inherently places a 
strict limit on the ability to extract the most effective information content from any given 
observation. To obviate this issue, past studies have prescribed specific localization radii for 
observations that are considered to be coarse (e.g., rawinsonde) or high resolution (e.g., 
Doppler radar) to some degree of success (e.g., Zhang et al. 2009). However, the 
characterization of individual observations as having a particular resolution is ad hoc and 
inevitably results in the loss of potentially valuable information. 

Emerging methods address the multiscale DA challenge in a way that is more seamlessly 
integrated into analysis algorithms, and helps ameliorate the need for ad hoc procedures (e.g., 
multipass variational methods) and a priori scale-based characterization of observations. Two 
such methods are: scale-dependent localization (SDL) which has been tested for global 
applications directly in the ensemble-variational framework with promising results (Huang et al. 
2021) and the second is in the dual localization method integrated within the ensemble Kalman 
filter framework (Yang et al. 2017). Exploration of multiscale, multi-resolution applications will be 
a common theme over the next decade for many applications. 

3.3.4 Balance and Initialization 

While not necessarily incorporated into the algorithms themselves, initialization plays an 
important part in the maintenance of balance within the system. Full-field digital filters have 
historically had a place at NCEP, but this method has drawbacks, particularly where 
hydrometeors are concerned. Digital filters smooth fields over time, which is detrimental for 
features with sharp gradients or where nonlinear processes dominate, increasingly common 
with increasing spatiotemporal resolutions. In the global system, NCEP has recently 
incorporated a 4D incremental analysis update (4DIAU, Lei and Whitaker 2016) for initialization 
as a replacement for the full field digital filter. The GSI also contains a normal mode initialization 
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scheme incorporated into the minimization, the tangent linear normal mode constraint (TLNMC, 
Kleist et al. 2009). Despite the considerable computational expense, the TLNMC provides 
enough benefit to warrant its inclusion into the GDAS. Ensuring initial conditions are balanced at 
the appropriate spatiotemporal scales is important for a good forecast and shall be an important 
component of future DA algorithms. Such future endeavors may include introducing a machine 
learning-based emulator to replace the time tendency model in the TLNMC to improve 
computational efficiency or leveraging the model interface directly within JEDI to compute 
tendencies consistent with the application (e.g. calling the model directly). 

Another method known to improve overall balance and the effectiveness of a DA algorithm, as 
well as the prediction model, is via the systematic investigation of physics tendencies and 
analysis increments between DA cycles (e.g., Wong et al. 2020). A model with a bias will be 
susceptible to imbalance when assimilating observations, particularly those observations which 
correspond to fields that are biased. Further, a biased model violates core assumptions in the 
underlying DA equations typically employed. However, it is rare that our models are without 
bias. A coordinated effort between DA and model (physics) developers to remove the bias 
through routine investigation of these tendencies and analysis increments will offer fundamental 
improvements to the prediction system as a whole. This approach to systematic model and DA 
improvement shall be a priority. 

3.3.5 Summary 

We envision the prioritization of improving our algorithms such that they capture the full range of 
spatiotemporal scales inherent in our Earth system, measured by our evolving observing 
network, and also resolvable by our models. Rather than committing to particular solvers for 
specific applications, JEDI infrastructure will be leveraged to explore various solvers and 
generate evidence to inform decisions as to how to proceed. For example, studies to do 
direct comparisons between Hybrid 4DEnVar and 4DVar for the GFS will be possible in the near 
future. Similar studies have been performed at places like the UK Met Office (Lorenc et al. 2015; 
Lorenc and Jardak 2018) and have been extremely valuable in informing a path forward, 
considering all aspects of the system including impact on skill, maintenance, computational 
cost, etc. This will be especially critical for exploring paths forward for radically different 
applications such as those designed for S2S versus warn-on-forecast, as an example. We will 
also prioritize further investments into JEDI infrastructure to enable forward-looking algorithms 
such as localized particle filters. 

3.4 Alternate Cadence Strategies and Continuous DA 

Today’s operational production suite features intermittent DA systems with a variety of cadence 
frequencies. The GDAS, for example, features a six-hourly cadence with analyses valid at 
so-called synoptic times (0000, 0600, 1200, and 1800 UTC). This supplements the GFS 
initialization that is similarly run with a six-hourly cadence but with earlier data cutoff times. 
Other systems, typically those running at finer spatial resolution, perform analyses more 
frequently, such as hourly or every 15 minutes. These cadences are loosely tied to the 
spatiotemporal scales of motion for which the respective Earth system prediction models are 
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intended to resolve and predict. As spatial resolution improves, phenomena that exist on shorter 
timescales are resolved as well - e.g. boundary layer circulations, convective-scale motions, and 
so on. Error growth at these scales is typically much more rapid than at comparatively coarse 
resolutions (e.g., Lorenz 1969), which often leads to the choice of a more rapidly updated 
cadence with high-resolution systems to mitigate errors associated with non-Gaussianity and 
nonlinearity. Such choices are self-evident in the inherent designs featured in present-day 
convective-scale DA systems, especially when radar observations are introduced (Johnson et 
al. 2015; Wheatley et al. 2015; Jones et al. 2016). 

In addition to the typical, high-frequency cadences often employed at the convective-scale, 
there also are numerous benefits to having global analyses at a shorter cadence. This includes 
providing more recent lateral boundary conditions to regional models and having a frequently 
updated analysis available for forecast verification, calibration, as well as situational awareness. 
There may also be a benefit to having global forecasts updated more frequently and available to 
the meteorological community for high-impact weather events such as land-falling tropical 
cyclones and for the aviation industry. However, we must be cautious as higher frequencies in 
both regional and global systems is often accompanied by the introduction of model imbalance, 
which should be assessed and may need to be ameliorated through the use of a variety of 
initialization procedures, such as with a digital filter (Peckham et al. 2016) or the incremental 
analysis update (Lei and Whitaker 2016) that were previously discussed. 

We note that the intended effect offered by a more frequent cadence need not only be 
addressed by running an intermittent DA cycle at a higher frequency. Algorithmic advances may 
also prove effective, such as extensions to 4D, which in some cases even allow for longer 
assimilation windows rather than shorter ones. ECMWF extended its global assimilation window 
from 6 to 12 hours in 2000 (Bouttier 2001) and later explored extending it further to 24 hours 
(Fisher et al. 2011). Using 4D algorithms, longer windows combined with sufficient observations 
to constrain the trajectory can lead to smaller error growth within the window and increase 
consistency between cycles. Increased window length in a 4D system can also be combined 
with a strategy of overlapping windows so as to not sacrifice a regularly produced analysis while 
accounting for late-arriving observations. Additionally, as we move towards increased coupling 
in our systems, we also need to consider the timescales represented by each component, some 
of which may require longer windows for both representation of their inherent scales of motion 
as well as differing data latency. 

While the question of cadence is important, we foresee an emerging need and opportunity to 
extend beyond intermittent methods to a more continuous assimilation approach. The traditional 
6 or 12-hour NWP cycle was originally tied to the observations being clustered around synoptic 
times, but the landscape of the observing system has changed dramatically with observations 
now being largely evenly distributed across the assimilation window. Initial efforts at ECMWF 
have already demonstrated a quasi-continuous assimilation application within their 4DVar by 
incorporating newly arrived observations during the outer loop iteration (Lean et al. 2020). 
Continuous assimilation is particularly advantageous for those systems which have update 
cadences on the order of one hour to minutes. Intermittent methods are cumbersome and add 
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computational overhead. For example, each assimilation involves regular stops/starts of the 
forecast model with each cycle, substantial I/O, and necessitates the enforcement of somewhat 
arbitrary data-cutoff times. In a continuous framework, the model and DA system are combined 
into a single application that runs continuously, all data motion is handled in-memory and the 
only I/O necessary is to ingest observations as they arrive and output files for diagnostic and 
post-processing needs. While our current suite of high-performance computing platforms are not 
designed to accommodate such an approach, novel cloud-based high-performance computing 
platforms can accommodate such applications. 

The cadence for our current and emerging suite of operational DA systems will be examined 
and considered alongside opportunities for developing a continuous assimilation capability as 
the body of scientific knowledge and supporting technology grows. Initial attempts at pursuing 
hourly updating strategies with overlapping windows have proven to be successful for prototype 
versions of the GDAS (Slivinski et al. 2022). Such efforts should continue to be pursued and 
expanded as a pathway toward more continuous DA. 

Improvements in DA Solvers 
1. Ensembles – provide invaluable information and will continue to be an area of 

exploration and expansion; 

2. Background error covariance – modeling methods are crucial for both 
scientific and computational performance and new methodologies such as the 
multigrid beta filter are being explored; 

3. Multiscale assimilation – helps more realistically resolve features in the 
analysis at all spatial scales and removes the requirement for ad hoc 
procedures to maximize performance; 

4. Balance and initialization – analysis needs to be physically realistic but also 
consistent with the model equilibrium to not cause imbalance in the subsequent 
forecast; 

5. Continuous DA and overlapping windows – allow for a shift from existing 
DA systems’ cadence paradigms built on legacy needs; 

6. Nonlinear and non-Gaussian applications – toward relaxation and removal 
of suboptimal assumptions. 

3.5 Coupled DA 

The need for coupled Earth system modeling has long been embraced for extended range 
prediction as a result of sources of predictability stemming from non-atmospheric components, 
particularly for subseasonal-to-seasonal time scales (National Academies of Sciences, 
Engineering, and Medicine 2016). For example, NWS/NCEP has been running coupled models 
for extended range prediction for nearly two decades, with the original implementation of the 
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Climate Forecast System version 1 implemented in August 2004. The HWRF and HAFS 
systems are another example of a coupled atmosphere-ocean modeling application that were 
operationalized. Coupled models bring the need to initialize multiple components, some of 
which may have different maturities with respect to assimilation capabilities, unique observing 
systems, and incompatible temporal and spatial scales for a single assimilation system. The 
Earth system components in this context may include the atmosphere, ocean, waves, sea ice, 
ocean biogeochemistry, land/hydrology, and atmospheric composition/aerosols, or combinations 
thereof. 

The push toward the adoption of “seamless prediction” will require the utilization of Earth system 
coupled models across the spectrum of applications and temporal scales. This introduces 
unique challenges for DA, even for NWP models. Historically, the assimilation systems for the 
various Earth system components have been developed independently, focusing on the aspects 
that are unique to each component. However, there is now a need for effective and consistent 
assimilation methods across components and advancement of coupled assimilation. This is 
important in order to extract maximal information content to constrain the coupled state, 
minimize initialization shocks, and ensure consistent initialization information across the 
interfaces. Initial forays into coupled DA were pursued within the context of version 2 of the 
Climate Forecast System (CFSv2). The Climate Forecast System Reanalysis (CFSR) and its 
real-time extension were pioneering in the implementation of a weakly coupled assimilation 
system (Saha et al. 2010). 

Before considering specific aspects, it is important to note that coupled DA covers a broad 
spectrum of possibilities, even if sometimes subclassified into “weakly” or “strongly” coupled DA 
(Penny et al. 2017). Weakly coupled assimilation generally implies the use of a coupled model 
for advancing the model state, but the assimilation for each component is done independently. 
Using an atmospheric-oceanic coupled system as an example, this would mean that there are 
separate assimilation systems for the ocean and atmosphere, respectively, while the 
background for each component’s update would be generated by advancing the state through 
the use of the coupled ocean-atmospheric model. The aforementioned CFSR and CFSv2 utilize 
such a paradigm. Weakly coupled assimilation is a natural progression and allows for the 
development of appropriate assimilation capabilities for each component. However, such 
schemes are limited in that observation utilization is limited to the component for which those 
observations reside and impacts to other components are only carried through the system by 
forward integration of the coupled model itself. Further, there are potential issues at the 
interfaces if there are inconsistencies in the initialized states. 

On the other end of the spectrum, “fully” or “strongly” coupled assimilation generally treats the 
entire coupled state together, allowing for all observations to have instantaneous impacts on all 
components of the Earth system for which there is meaningful information. In the simplified 
atmospheric-oceanic example, this could mean that there are observations that would directly 
impact the updates to both the atmospheric and oceanic states, e.g. observations directly at or 
near the ocean surface. The treatment of the entire coupled state in a consistent way has two 
potential direct benefits: 1) more extraction of useful information from observations across 
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components, and 2) reduced or minimized shocks as the information is used to propagate 
forward in time with the coupled model. However, there are many potential difficulties to 
overcome in such a paradigm such as the treatment of coupled error covariances, differing 
spatial and temporal scales of phenomena across the component, and radically different 
observing systems to constraint aspects of the coupled state. 

Figure 9. Schematic of the implementation of a Weakly Coupled Data Assimilation system (left) 
versus a Strongly Coupled Data Assimilation system (right). Figure from Zhang et al. 2020. 

There are additional options that reside between what some generally think of as either “weakly” 
or “strongly” coupled assimilation. One such example has been demonstrated at ECMWF 
whereby the coupling occurs through the utilization of the coupled model as part of the outer 
loop configuration of the variational solver (Lalayoux et al. 2016). This option has occasionally 
been referred to as quasi-strongly coupled assimilation. While the minimization is handled 
separately between the oceanic and atmospheric solvers, information is passed across the 
components as part of the outer loop update and re-linearization. This is a step beyond the 
weakly coupled assimilation as was done in CFSv2. Other options, such as the utilization of 
coupled observation operators for observations that have information relevant to multiple 
components, are also an option. This is a particularly attractive option for things such as satellite 
radiances that are sensitive to surface temperature, and provides a natural extension to the idea 
beyond the already operational near-sea surface temperature (NSST) scheme that is used as 
part of the GDAS. 

The plan for implementation of the UFS to simplify the NCEP production suite explicitly maps 
out applications that will require some form of coupled DA for initialization, including MRW/S2S, 
SFS, HAFS, and RRFS. Within this context, coupled assimilation is going to be a central 
strategic element moving forward. While there is a natural starting point to utilize weakly 
coupled assimilation for components as ready and available, prioritization of coupled 
assimilation research and development will be critical for future successes within the context of 
the aforementioned applications. The decision to move to JEDI as the central, unifying 
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infrastructure for assimilation should enable better synergy and allow for the exploration of 
substantive advances in coupled assimilation for UFS applications. 

One example of the potential for significantly accelerated innovation is within the context of land 
and coupled land-atmospheric assimilation. For the operational global NWP system run at 
NCEP, soil moisture and temperature are not directly constrained by observations2 and the snow 
analysis that is utilized is offline and outdated. Initial work is already progressing to build DA 
capabilities for soil (moisture and temperature) and snow within JEDI for future use by UFS 
applications. Further, initial attempts of doing more strongly coupled land-atmosphere 
assimilation to constrain soil moisture with observations of two meter temperature and humidity 
have shown some promising results. These developments have set the stage for a significant 
leap in capabilities for initializing some land variables within the context of MRW/S2S and SFS. 
In addition to the direct effect of better constraining the land states, such capabilities, through 
unified infrastructure, have the potential to be exploited to enable better utilization of 
observations sensitive to those components, e.g. all-sky/all-surface satellite radiances. 

Initial attempts at wave assimilation highlight the need for coupled considerations for some 
specific applications. While it was relatively straightforward to perform the state estimation for 
the significant wave height, early efforts demonstrated difficulty in the retention of the analysis 
information in the forward model integration. Within the context of the forced wind-wave 
problem, this makes sense in the absence of also correcting the forcing information. Coupled 
assimilation should be designed to extract information from wave observations to then constrain 
the forcing (in addition to the initial wave state itself). 

A similar problem to wave assimilation exists for reactive trace gasses for air quality 
applications. Near-surface ozone (O3), a hazard to human health, is generally a product of 
photochemical reactions controlled by emissions of volatile organic compounds (VOCs) and 
nitrogen oxides (NOx). Thus, while one can update the initial 3D state of the O3 model field, the 
analysis information will not be retained without simultaneous adjustment of the precursor 
emissions. Improved estimation of emissions is also key for aerosols and greenhouse gasses 
(GHGs), but because the atmospheric lifetimes of aerosols (days) and GHGs (years) are much 
longer than the strong diurnal variability caused by photochemical reactions, state estimation 
impacts last much longer in the free forecast. Accurate state estimation of aerosols in coupled 
models leads to improved radiative forcing from both the direct and indirect effects of aerosols, 
and can be used to also improve the assimilation of other observations (i.e. aerosol impacted 
radiances). 

Within the context of space weather applications, the coupled Whole Atmosphere 
Model-Ionosphere Plasmasphere Electrodynamics (WAM-IPE) Forecast System was 
implemented into NCEP operations in 2021. The WAM is an extension of the GFS model up to 
400-600 km, with its own DA system (Whole Atmosphere Data Assimilation System, WDAS) 
that mimics the GSI-based GDAS (Wang et al. 2011, 2012). Recent research has been 
expanding to improve the representation of variability and initialization of variables in the 

2 Soil moisture is nudged by the GLDAS as forced by an observed precipitation product. 
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mesosphere, and ionosphere. In particular, recent progress has been made in the assimilation 
of total electron content (TEC) observations within the context of whole atmosphere models 
(Pedatella et al. 2020). Initial results show promise for this challenging coupled assimilation 
problem. Such applications are poised to take advantage of underutilized data from GNSS 
measurements, such as those from the Constellation Observing System for Meteorology, 
Ionosphere, and Climate (COSMIC-2) mission. Space weather has important implications for 
communications, electric power transmission, GPS accuracy, and satellite drag. Applications of 
modeling and DA in this arena are expected to grow as an emerging area in the next decade, 
bringing with it unique challenges for coupled DA for whole atmosphere modeling and 
assimilation. 

A more comprehensive survey and summary of coupled assimilation success in applications are 
summarized nicely in Penny et al. (2017). Similarly, the NWS strategy for coupled DA is well 
aligned with many of the recommendations outlined therein following the workshop in 2016. 
Progress is underway to build JEDI-based capabilities for most components that will be 
considered for future UFS-based coupled applications. Weakly coupled assimilation will be the 
assumed starting point, with advancements on “more strongly” coupled sub-components as they 
become available and demonstrate maturity. The plans for GFS version 17 are consistent with 
this philosophy. Specific priorities over the next decade will include, but not be limited to: 

● Engagement in research and development on coupled assimilation activities that cover 
the entire spectrum of strength of coupling and readiness level. 

● Explore and exploit multiscale capabilities for coupled assimilation to assist in handling 
the differing temporal and spatial scales across media. 

● Leverage coupled ensemble perturbations to explore coupled error covariances and 
exploit hybrid EnVar and/or EnKF methodologies. 

● Evolve toward new innovations to handle nonlinearity and non-Gaussian components 
from which linear and Gaussian assumptions do not apply. 

● Specific emphasis on innovations with respect to assimilation at the coupled interfaces, 
e.g. handling SST within coupled ocean/atmosphere applications. 

● Explore the viability of alternate algorithmic choices. For example, in addition to the 
general issue of coupled error covariances, (fully) strongly coupled DA may be difficult to 
execute within the context of 4DVar given the need for full tangent-linear and adjoint 
models of the coupled system. However, the exploitation of AI/ML (see next section) for 
model components may open new avenues for coupled assimilation applications. 

While some aspects of things like weakly coupled assimilation are fairly mature and have 
yielded significant advancements in skill, coupled assimilation, more broadly, is still a relatively 
new area of research and development. This is particularly true for strongly coupled 
assimilation, which while showing promise in some simplified and idealized settings, still has a 
long way to go until it is realized for something like NWS operational applications. 
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Coupled DA Highlights 
1. Seamless prediction – Earth system coupled models across the spectrum of 

applications and temporal scales requires coupled DA; 

2. Work towards strongly coupled – allowing for observations to have 
instantaneous impacts on all relevant components of the Earth system; 

3. Improvements in use of observations – better constraint of some formerly 
parametrized states allow for better use of observations (e.g. all-sky/all-surface 
radiances); 

4. State and parameter estimation – some applications (e.g. waves, land, and 
air quality) are more sensitive to forcing than initial conditions, but these 
forcings can be improved by DA. 

3.6 Incorporation of AI/ML 

DA and NWP continue to grow more resource intensive with increased spatial and temporal 
resolution, larger ensemble sizes, and solver complexities. The inclusion of coupling also 
drastically increases the size of the system as well as the number of observations used. 
Observation platforms themselves are also being constructed with higher spatial, temporal, and 
spectral density. With computing capacity not increasing as rapidly as other innovations, we 
need to find ways to not only reduce computational costs of our existing systems, but also 
reduce the increase in cost for future systems. 

Machine learning (ML) is a form of artificial intelligence (AI) that “learns” from a set of inputs to 
produce an output. Once the ML models are trained, they can identify patterns, make decisions 
and typically run much faster than the process they were trained to replicate. Forms of ML have 
been used in NWP for many years, i.e. linear regression (Malone 1955), but with increased 
computing power and the accessibility of open-source tools (e.g. Pedregosa et al. 2011, Abadi 
et al. 2015, Chollet 2015), artificial neural networks with increasing complexity, also known as 
deep learning, are becoming prevalent in many far-reaching fields such as stock market 
predictions (Chong et al. 2017), galaxy classification (Dieleman et al. 2015), and cancer 
diagnoses (Manogaran et al. 2018). These methods are becoming increasingly used within 
NWP sectors as well, including severe weather prediction (Gagne et al. 2019; McGovern et al. 
2019), physics parameterizations (Gentine et al. 2018; Price et al. 2018), and post-forecast 
correction (van Straaten et al. 2018). 

Recent advances in NWP emulators from PanguWeather (Bi et al. 2022), ForecastNet (Pathak 
et al. 2022), and GraphCast (Lam et al. 2022) demonstrate impressive performance with 
respect to the ECMWF IFS (Bouallegue et al. 2023). These models, trained with ERA5 
reanalysis, run at a fraction of the computational cost of the full IFS and, yet, generate 
medium-range forecast skill comparable to the IFS. Given this success, ECMWF recently 
launched the alpha version of its Artificial Intelligence/Integrated Forecasting System (AIFS). 
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Within EMC, ML techniques have been applied in various parts of the NCEP model suite, 
including the operational retrievals of SSMI (Krasnopolsky et al. 1999), the wave-wave 
interaction parameterizations of WAVEWATCH (Tolman et al. 2005), and long- and short-wave 
radiation parameterizations in climate modeling (Krasnopolsky et al. 2008). Means calculated 
through neural networks have been explored as an alternative to ensemble means for both 
precipitation (Krasnopolsky and Lin 2012) and waves (Campos et al. 2019). From the EMC DA 
perspective, early exploration has been conducted on the intelligent thinning of AOD 
observations (Boire et al. 2020). EMC has recently begun exploring the use of the GraphCast 
NWP emulator trained with GDAS data. 

There is an equivalence between the theory of DA and ML techniques (Hsieh and Tang 1998; 
Abarbanel et al. 2018; Geer 2020). They are both inverse problems that can be defined in a 
Bayesian framework. While the terminology is different, the concepts are the same: neural 
networks construct a loss function, which is equivalent to a variational cost function, and 
minimize that function iteratively. ML takes input “features” to train against output “labels” and 
solve for the “parameters” that minimize the loss. DA uses those labels and parameters to 
instead solve for the input or state. Neural networks also iterate using back-propagation, which 
is equivalent to an adjoint. This equivalence motivates the exploration of crossover techniques 
between DA and ML. In fact, the idea of combining DA and ML has been formally proposed as 
Data Learning, see for example Buizza et al. (2022). 

ML can be potentially applied to many parts of the DA process, particularly in the treatment of 
observations. Observation platforms are increasing in resolution with only a small portion of the 
observations currently used. Traditional thinning algorithms used to reduce data volume can be 
reexamined in light of ML development. The ML technique of autoencoders could quickly reduce 
the dimensionality of a dataset while retaining the important features, making better use of 
observations that are already available. ML can also provide automated data monitoring by 
identifying periods of anomalous data quality or anomalous sources. There are several 
possibilities concerning the treatment of clouds in satellite data from cloud detection and 
classification (Jeppesen et al. 2019) to cloud clearing (Chang et al. 2015). 

Forward models could potentially largely benefit from ML. Radiative transfer models used 
operationally already include assumptions to speed up calculations, so an ML emulation of a full 
physical model could be comparable to the fast versions already in use. Look-up tables could be 
replaced with neural networks (Scheck et al. 2021) or more extremely the full radiative transfer 
model could be replaced (Liang et al. 2022). Retrieval algorithms could also find some benefit. 
More efficient feature tracking methods could enhance AMV observations, producing 
observations with much fuller coverage (He et al. 2019) or producing better uncertainty 
estimates (Teixeira et al. 2021). Land DA could improve as well with ML-generated soil moisture 
retrievals, like those recently operational at ECMWF (Rodriguez-Fernandez et al. 2019). 

ML techniques have been shown to generate efficient and accurate emulators of tangent linear 
and adjoint codes (Hatfield et al. 2021). This has direct application to 4DVar. ML emulators 
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could be explored for application to even more complex DA algorithms such as hybrid 4DVar 
and weak-constraint 4DVar (Bonavita and Laloyaux 2020). Other components of the DA system 
could also benefit from application of ML techniques. Deep learning could be applied to large 
databases of model error to develop highly efficient background error models. Analysis 
increments could be examined to develop ML-based bias correction schemes as demonstrated 
for a prototype version of the GFS (Chen et al. 2022). Furthermore, ML could potentially provide 
an automated mechanism to learn a representation of the model error (Bonavita and Laloyaux 
2020). 

In addition to the applications mentioned above, ML has potential application to the post 
processing of DA system output. Neural networks have shown promise in the area of statistical 
downscaling (Baño-Medina et al. 2020). The use of neural networks is being actively explored 
for dynamic downscaling of near-surface real-time mesoscale analysis grids to high-resolution 
grids. Research has shown improved utility of ensemble precipitation forecasts through the 
application of ML-developed decision trees (Hewson and Pillosu 2020). Similar approaches 
could be applied to enhance the usefulness of ensemble analyses. 

Given the rapid advances in ML and demonstrated benefits from preliminary studies, EMC 
needs to develop more internal expertise with the toolbox of ML techniques. As an initial step, 
the DA group has established an AI/ML study group to foster training, planning, and initialization 
of projects to explore within this context. The AI/ML study group completed the ECMWF 
Machine Learning in Weather and Climate MOOC during the spring of 2023. Upon completion of 
the course group members developed and submitted AI/ML projects ideas in the areas of 
observation processing, emulation, and post-processing. 

Work has begun in EMC on developing ML-based techniques to improve the quality of and error 
estimates for atmospheric motion vector super-observations. Another observation-related 
project is applying unsupervised and supervised ML methods for the classification and detection 
of observation anomalies in the upper air data. ECMWF is also pursuing ML-based observation 
anomaly detection methods. ML techniques can also be applied to observation quality control. 
Proposed projects include the application of ML to develop automated QC procedures for 
high-resolution observation sets assimilated by the RTMA and URMA. Another study will 
explore the replication of existing aircraft quality control procedures with an ML approach. 

ML techniques are being used to explore accurate and efficient methods to emulate complex 
and computationally expensive land surface emissivity models. Longer term ML emulation 
projects include (1) using ML-based models to significantly increase ensemble size for use in 
hybrid ensemble-variational assimilation, (2) efficient calibration of the multigrid beta filter, and 
(3) the use of ML-based short-range, and high-resolution forecasts as the background in the 
3D-RTMA. 

Investigation of ML techniques for post processing are not limited to bias correction of model 
output. ML techniques are being explored to bias correct radiances in regional DA systems. 
Success in this project could help address a long standing challenge of limited sample when 
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bias correcting radiances in regional DA systems. Another application of ML techniques being 
explored is to replace the existing dynamic downscaling method applied to RTMA output with a 
more efficient, flexible, and accurate ML based scheme. 

As demonstrated by the planned establishment of a NOAA AI Center and the recent creation of 
other AI centers across the nation such as the AI2ES center, ML is quickly becoming a major 
focus of research in the field. Many other operational NWP centers around the world are 
exploring and employing ML techniques in their DA pipelines. ECMWF recently released a 
technical memo outlining their 10-year roadmap for machine learning (Dueben et al. 2021) with 
applications identified across the entire NWP spectrum. NOAA held a workshop in November 
2023 focused on prioritization of AI/ML for NWP within the agency. The integration and 
exploitation of AI/ML within the context of DA will be a significant priority for EMC in the 
coming decade. 

AI/ML for DA priorities 
1. Observations – quality control, data selection, bias correction, 

super-observations, extraction of maximal information content, anomaly 
detection and operational monitoring; 

2. Forward operator emulation – computational efficiencies, replacement for 
complex operators; 

3. Background error – computational efficiencies, multivariate aspects and 
coupled assimilation, parameter estimation for error models; 

4. Background – dynamic downscaling, bias correction; 

5. Model error – estimation and correction; 

6. Emulator exploitation – replacement for TL/AD in 4DVar, efficient creation of 
huge ensembles to avoid localization; 

7. Hybridization – explicit blending of ML and DA; joint frameworks; pathways to 
going directly from observations to simulation/emulation. 

3.7 Reanalysis 

Reanalysis datasets are key infrastructure to support NOAA’s mission, combining historical 
observations with modern modeling and assimilation capabilities to create spatially and 
temporally coherent records of the Earth system. NOAA was a pioneer in the science and 
practice of atmospheric reanalysis. This included the first atmospheric reanalysis (NCEP/NCAR, 
Kalnay et al. 1996), coupled reanalysis for the climate forecast system (CFSR, Saha et al. 
2010), and regional reanalysis (North American Regional Reanalysis, Mesinger et a. 2006). 
Reanalysis has many purposes and drivers, including the ability to generate hindcasts for 
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historical periods, generation of homogenized datasets for climate monitoring, and as part of the 
modeling system development process. 

It is well documented that reforecasts are essential for realizing skillful operational predictions 
for a wide variety of applications and products. They are operational requirements for upgrades 
to medium range and subseasonal-to-seasonal prediction systems (e.g. GEFS and CFS/SFS). 
The ability to generate hindcasts requires historical initial conditions, making reanalysis 
development and execution a key priority for DA. The ability to generate reforecast datasets for 
calibration has been a significant driver for reanalysis efforts within NOAA in the recent past. 
Recently, NOAA completed an atmospheric reanalysis for a modern period as part of the 
upgrade to version 12 of the Global Ensemble Forecast System (Hamill et al. 2022). 

As with the CFSR and GEFSv12 reanalysis, most efforts utilized state-of-the-science NWP 
systems as the mechanism for producing a reanalysis dataset. The recent ERA-5 reanalysis 
(Hersbach et al. 2020) by ECMWF is one such example. However, reanalysis efforts themselves 
have considerable scientific challenges. This is particularly true if one considers the use of such 
datasets for things like longer-term monitoring, as is the case of the NCEP Climate Prediction 
Center. As one example, discontinuities can arise in time series of particular quantities through 
the introduction of new observing systems. Additional issues can arise when applying 
present-day systems to historical periods, such as the need for special treatment of background 
error for particular areas or periods, specific needs for observation quality control and bias 
correction, or dealing with geographic and temporal voids in particular data sparse areas and 
periods. Some of the scientific focus areas for future reanalysis are well-articulated in Hersbach 
et al. (2018). 

The EMC effort toward NOAA reanalysis remains a small part of the more holistic solution. Part 
of the NCEP strategy will be to endorse and support the broader NOAA strategy for sustaining 
and maintaining a reanalysis development and production program within the agency. To date, 
reanalysis efforts have been treated as isolated one-off projects. However, it is imperative that 
reanalysis activities are integrated into regular business, similar to efforts that have been 
deployed in Europe through the Copernicus project. More specifically, this will include expanding 
ongoing collaboration with key partners from within NOAA such as OAR/PSL, where the 
previous efforts for GEFSv12 reanalysis were complete and initial efforts toward coupled 
reanalysis for a future SFS are now underway. Similarly, EMC should continue to work closely 
with other governmental partners with reanalysis mandates such as NASA/GMAO. GMAO has 
continued to invest in reanalysis science, having completed MERRA-2 (Gelaro et al. 2017) and 
now working toward their next-generation production reanalyses. EMC is currently engaged in a 
joint project with OAR/PSL and NASA/GMAO in an effort toward building some joint, 
JEDI-based infrastructure that will be utilized for future generations of coupled reanalysis at both 
centers. Such efforts need to continue and expand. 

Another particularly relevant avenue for additional focus on reanalysis is within the context of 
the aforementioned AI-based NWP emulators. Most of the NWP emulators that have been 
deployed in the past few years have been trained upon ERA-5 based reanalysis data. NOAA 
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has already begun experimentation with such emulators, but has yet to build a model based 
upon training using NOAA data. For example, one could utilize the reanalysis data that was 
generated for GEFSv12 as an initial starting point to create a NOAA-specific emulator. This also 
raises interesting questions about requirements for future reanalysis, as drivers for emulators 
may become more important than drivers for traditional reforecasts. For example, there may be 
a need for much higher fidelity (in both space and time) to produce emulators for specific 
phenomena and/or to improve upon some of the current emulators. In this context, DA 
developments for reanalysis, to generate datasets for emulator training, has the potential 
to become a significant priority in the coming years. 

3.8 Development Practices 

3.8.1 Continuous Integration 

For large collaborative projects, it is important to have multiple developers working on different 
components in parallel in separate version control (e.g. git) branches. However, when these 
parallel branches are merged back to the main branch, code managers face the challenge of 
ensuring that all of the individual developers’ work meets certain requirements. Continuous 
Integration (CI) is a process in which code is built and tested on one or more platforms 
automatically as part of the code review process. These automated tests can include: 

● unit testing 
● code coverage (is the code extensively tested) 
● checks that the code follows certain styles/conventions (ex. PEP8 for Python, or the 

Google C++ style guide) 

This can be done on existing HPC platforms, but is more easily facilitated through CI systems 
such as Circle-CI or GitHub Actions. For the latter two, a suite of checks/tests can run 
automatically without user intervention for each pull request or commit and be required to pass 
before code can be merged to the main branch in GitHub whereas the former would likely 
require cron jobs and supporting infrastructure to be developed to run on NOAA HPC. 
Automated tools such as these accelerate the development process and allow for faster 
full-scale scientific evaluation by ensuring that new code adheres to a set of standards and does 
not break existing capabilities with minimal human effort required. 

3.8.2 Continuous Deployment 
While CI is an essential modern software development practice, these automated testing tools 
are limited in scope in that they only work to ensure that each component independently is 
functioning as expected. However, in a complex application, such as NWP, it is often impossible 
to see the impacts of code modifications without running full-scale, realistic tests. Currently, 
EMC developers perform cycled forecast experiments for their individual scientific contributions, 
generally at a lower horizontal resolution compared to the target operational system. The results 
from these experiments are then interpreted, and, if favorable results are shown, a 
full-resolution test incorporating these scientific changes is generally not executed until late in 
the development process. This full-resolution, pseudo-operational forecast system, due to 
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computational and workforce constraints, often does not start until the scientific choices made 
for the model upgrade are largely already decided. 

Leveraging the concept of Continuous Deployment (CD), in which new software capabilities are 
deployed in a production environment after testing and delivery, has the potential for EMC 
developers to more quickly see impacts resulting from scientific code changes in a 
pseudo-operational model configuration. Not only would this facilitate full-resolution results 
earlier in the development process, but would also potentially reduce the amount of effort spent 
by each developer configuring and monitoring their own parallel experiments. However, this 
approach is not without challenges, most notably the computational expense. Running a 
full-resolution parallel experiment in real-time alongside the production forecast system will cost 
at least as much as the production system, and likely more if computationally expensive 
options/features are incorporated, and this may not be possible using existing on-premises 
computing resources. The use of high-performance cloud computing resources may alleviate 
these concerns, but come with others including the variable cost of CPU hours on these cloud 
platforms as well as the need to arrange agreements with restricted data providers of 
observations currently assimilated into the operational systems. 

3.8.3 Modern Programming 

Historically, the Fortran programming language has been the bedrock of NWP and that is still 
largely true today. Rooted in the era of punch cards and mainframes, Fortran has been 
modernized through several major revisions with the most recent standard being Fortran 2018. 
Support for features such as object-oriented programming and derived types have extended 
Fortran’s capabilities far beyond what was envisioned when the language was developed in 
1957, but limitations still exist with this legacy language. The Fortran 2003 standard added 
interoperability with the C programming language, and with that, the ability to include Fortran 
subroutines into C programs. While Fortran still excels in its computational efficiency and 
maintains a majority throughout the Earth sciences, it is no longer the sole compiled 
programming language used in HPC applications. 

Components of JEDI such as OOPS and IODA are written almost exclusively in C++, a 
high-level object-oriented extension of the C programming language. Others, such as the model 
interfaces and UFO contain significant amounts of modern Fortran at the lower levels, but still 
include C++ code and utilize the C/Fortran interoperability to move between the two languages. 
This hybrid approach allows JEDI to use existing scientific code in Fortran where appropriate, 
but also to take advantage of the more modern features of C++ in the DA software. Because of 
this, it is essential that the NWS has expertise in multiple languages (C++ and Fortran), and 
embrace evolving best practices (object-oriented programming as one such example) in order to 
support not only JEDI development and maintenance but also for any future NWP tools. It is 
also essential that NWS be adaptable and embrace state-of-science and state-of-practice 
changes as technology advances. 
In addition to compiled code, the use of scripting languages are essential to NWP, as these 
scripts which stage, set up, archive, and execute the various applications are the glue of any 
modeling system. Generally, this has been done using shell scripts in the past, and while shell 
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scripting is powerful for filesystem related activities, many pieces of modern workflows require 
complicated hacks or workarounds (such as using tools including sed, awk, grep) to perform all 
necessary functions. Python is now the scripting language of choice in the Earth sciences, 
because of its ease of use and flexibility. Not only can Python replace shell scripting for workflow 
tasks, but it has also started to replace languages such as NCL (which has been put in 
maintenance mode in favor of Python) for data analysis and visualization capabilities. Several 
JEDI utilities/components are developed in Python including R2D2 and EWOK. METPlus, the 
UFS verification framework, also is written in Python, and it is likely NCEP’s unified workflow will 
also largely be Python-based. Thus, Python will certainly be an essential tool utilized throughout 
the NWS in the coming decade, and its applications within the DA systems will be numerous. 

Language model AI (LMAI) has the potential to significantly impact the entire development 
(software and scientific) process in ways not entirely clear at present. Raman and Kumar (2022) 
argue that advances in LMAI require educators to reassess the scope and content of what the 
next generation of computer scientists learn. Such a change would impact the skillset of future 
staff and necessitate updating the skills of current staff. Chen et al. (2021) highlight both 
potential benefits and hazards of the evolving LMAI landscape. Currently, LMAI is routinely used 
for generating code snippets, answering questions about programming language syntax and 
improving code readability by adding inline code comments. LMAI may perform tasks of various 
complexities such as developing a plotting script for a specific application or deriving a tangent 
linear and adjoint of simple code snippets. These tools have the potential to significantly change 
the development paradigm and should be embraced. 

3.8.4 High Performance Computing 

Earth system prediction and high performance computing have been intertwined since their 
respective inceptions. Advances in computing allow for more sophisticated representations of 
the Earth, larger ensembles, and ever growing quantities of data. If we look back to the mid 20th 
Century up to present day we see a clear trend in improving forecast performance alongside 
technological advances. 

As technology advances, so does forecast skill (Figure 10). It is therefore a priority for us to 
consider the platforms of the future while developing all components of our Earth system 
prediction systems today. Cloud computing affords one such mechanism to not only meet high 
performance computing needs of today3 but is also a highly effective mechanism for managing 
large, distributed datasets and expanding accessibility. Further, the computing environment 
undergoes regular and rapid change with the continual introduction of new technology and 
hardware, and so it is also an attractive environment for developers to test the next CPU, GPU, 
memory, interconnect, etc. While the community is on the cusp of the exascale era, it is also 
necessary to look beyond the near horizon to stay abreast of the most active areas of research, 
such as quantum computing. 

3 Building a Weather-Ready Nation with Intel HPC in the Cloud, 2022. 
https://www.intel.com/content/www/us/en/customer-spotlight/stories/noaa-customer-story.html 
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Figure 10: NCEP operational model forecast skill dating back to the 1970. Operational high 
performance computing systems available at the time are annotated along the x-axis. Image 
courtesy of Mallory Row (SAIC and EMC/VPPPGB). 

Scientific Computing Priorities 
1. Continuous integration – automated testing to speed up development 

process to foster innovative science; 

2. Continuous deployment – rapid prototyping and demonstration of 
advancements in a production-like environment; 

3. Modern programming – embrace industry-standard practices and newer 
languages and techniques; 

4. High performance computing – exploitation of exascale computing and cloud 
resources; 

5. Leverage artificial intelligence – use AI/ML techniques directly in 
computational science but also as part of the development process (e.g. using 
language model AI to accelerate writing code). 
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4. Data Assimilation Vision: A Holistic Approach 

This section will focus on consolidating into a holistic plan for evolving DA innovation and 
operationalization over the next decade. The realization of some of the articulated vision will 
require a concerted effort to execute substantial change throughout processes, people, and 
culture. The plan will also try to identify several specific risks, dependencies, and issues along 
with potential mitigation strategies. 

4.1 Addressing Grand Challenges 

To recap, several scientific grand challenges of relevance to the next decade have been 
identified and documented by the community through a series of workshops, conferences, and 
similar events. In the time since those workshops, additional challenges and drivers have 
revealed themselves including a need for holistic reengineering of observation processing; 
computational efficiency with a path forward to exascale and cloud HPC; integration with other 
elements of cross-cutting infrastructure; requirements for reanalysis; and leveraging of new 
technologies such as artificial intelligence (AI) and machine learning (ML). 

Addressing these challenges within the context of facilitating changes to operational DA will 
require several significant steps, some of which are already underway. These include, but are 
not limited to the following priorities and actions: 

1. Full embracement of, and contributions to, the JEDI infrastructure as the DA vehicle for 
the next decade (and beyond); 

2. Engagement by NCEP staff on lower readiness level research and development within 
the aforementioned challenge areas. This will include growing collaborations and 
partnerships, co-owning relevant research projects, and taking on higher risk (higher 
reward) efforts; 

3. Willingness to embrace and pursue significant changes in the design of the production 
suite, including things like moving toward alternate cadence strategies and more 
continuous DA; 

4. Embracement of new technologies and best practices; 
5. Investments in workforce sustainment and development. 

4.1.1 JEDI as Foundational Infrastructure 

As described in previous sections, the JEDI infrastructure is designed such that scientific 
software development efforts would be distributed and shared between partners in order to 
reduce redundancy and accelerate the process by which new observations or techniques could 
be incorporated. In the immediate future, a significant portion of EMC’s DA activities will be 
centered around development, evaluation, and transitioning to operations existing analysis 
capabilities from GSI-based solutions to those using JEDI. While these activities occur, however, 
the responsibility to maintain and upgrade existing operational capabilities still remains. This 
presents a challenging balancing act in which limited resources need to be allocated to both 
near-term and long-term advancements in parallel. Through these JEDI transition activities, 
EMC developers must not only learn to be users of the JEDI software, but also contributors. 
This is necessary from both the perspective of scientific advancement, but also for future 
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operations and maintenance. As the immediate goals are not necessarily for scientific 
enhancements, but rather (at minimum) replication of current operational capabilities through 
this wholesale replacement of the DA system, the JEDI transition is equally an engineering 
problem as it is a scientific one. Thus, while the return on this significant investment may not be 
immediately realized, once all operational analysis systems are JEDI-based, scientific 
advancement can then proceed at an accelerated rate. Formal transition plans for integration of 
JEDI into operational applications are currently under development and outside of the scope of 
this strategic document. 

In addition to the resources being put toward JEDI-based developments to replace current 
(legacy) operational infrastructure, work is already underway to begin exploring innovations 
consistent with the previously identified research and development priorities. It is imperative that 
JEDI-specific expertise and ownership is built within the EMC staff. This will ensure the ability to 
facilitate operational transition activities, but also ensure research and innovation developments 
are prioritized and enabled for the future. NCEP staff are more than just JEDI “users” focused 
on transition to operations of external developments, but rather, core developers and co-owners 
of the system. 

Elements of innovation from within the JEDI infrastructure are already in development and being 
considered for candidate operational implementations, such as the use of hybrid EnVar 
assimilation for marine DA, falling under the broader scope of the JEDI-SOCA project. Similar to 
advancements found in atmospheric assimilation, leaps in skill are expected to be realized for 
the coupled system with such developments. There are other examples underway through the 
exploration of novel forward operators within the UFO for atmospheric assimilation. These are 
only some of the early examples of what will eventually become the use of JEDI for a truly 
unified DA infrastructure for UFS-based applications. 

4.1.2 EMC Engagement Across the “Funnel” and Partnerships 

As with other aspects of the operational system, EMC plays a unique role in the facilitation of 
DA innovations into NWS operations for the purposes of realizing improved predictions and 
forecast skill. The assimilation team at EMC has been an active, intentional community 
collaborator on DA for operational NWP for well over a decade. There are many examples of 
external collaborations through GSI that have resulted in transition-to-operations and improved 
operational predictions. This has largely happened through two distinct mechanisms which 
provide a unique perspective and afford opportunities for lessons learned. In one paradigm, 
collaborators worked on community versions of the GSI, supported by the Developmental 
Testbed Center (DTC), which then would feed back to the authoritative repository at NWS and 
potential inclusion for operational utilization. A model such as this minimizes the support role 
required from scientists within a place like EMC and helps to facilitate broad access to 
operationally relevant codes. However, the sequential process often makes it difficult to 
integrate innovations into projects or on schedules that are well aligned with other development 
activities leading to operational implementations. NWS has had very limited success in 
integration innovation through this process over the years. The alternate paradigm involved the 
integration of key partners directly into the repositories and process to facilitate development 
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and testing of specific innovations for eventual inclusion into projects leading to 
implementations. Many of the hybrid EnVar developments for the GFS/GDAS in the 2010s fall 
into this latter category, leveraging key contributions from partners in OAR and academia. 

The nature of community, collaborative development will continue to evolve through the 
establishment of the UFS and EPIC and transition to a new unified DA infrastructure through the 
JCSDA and JEDI. This will necessitate changes in roles and responsibilities for the EMC DA 
team to best leverage innovations from the community. In addition to community GSI 
experiences, there are many ongoing efforts from externally funded projects from 
NWS/STI-Modeling (NGGPS, HFIP, and Weeks 3-4) and OAR/WPO (JTTI, Observations, and 
Innovations), whereby EMC plays a critical role as the “receiving office” and transition 
coordinator but often without the required resourcing to handle the transition. These are critically 
important lessons learned to inform how best to position NWS in the R2O and O2R processes 
to be able to most effectively realize innovations for improved operational predictions. It is 
absolutely critical to share responsibilities across the readiness level (RL) spectrum. 

Realization of innovation in operations requires active engagement with NWS Central 
Operations (NCO) and NWS customers. As outlined in Kleist et al. (2023), implementation is a 
time-consuming process. Much testing and evaluation is required for major upgrades. From the 
research side, collaborators need to understand and consider these realities as we work 
together to address grand challenges. For example, changes to the GFS impact not only the 
GFS but also networks dependent upon GFS output. From the operational side, NCO and 
customers need to be open to innovations which improve guidance at the cost of restructuring 
workflows, impacting delivery timelines, or touching on other technical aspects. Careful thought 
needs to be given to the operational piece of R2O and O2R. 

NWS and NCEP/EMC cannot and will not be able to perform scientific development and 
testing alone. Partnerships with other government agencies, academia, and the private sector 
will be critical for accelerating the rate at which innovations can find their way into operational 
realizations. Past experience and lessons learned have shown that this will require EMC 
engagement throughout the process, including participation and engagement in lower RL 
activities that may have been deferred to others in the past. Further, NWS will need to bring 
others up the RL-chain to be aware of, understand, and help facilitate R2O activities. In other 
words, the lines need to be blurred and responsibilities need to be shared, as much as possible, 
throughout the entire R2O and O2R process. Absent clearly defined roles and responsibilities, 
close coordination with accountability, and mutually beneficial outcomes, collaboration becomes 
unbalanced at best and unfruitful at worst. Some of this is documented in more detail such as in 
the Organizing Research to Operations Transition plan and UFS Innovations to Operations 
(2021) series of documents. 

In addition to continued engagement with several of the key partners and entities that have 
already been identified throughout (e.g. JCSDA and associated partner agencies, EPIC, OAR 
labs, academic collaborators), EMC will focus efforts on several different collaboration and 
stakeholder pathways. NESDIS is a key partner as one of the main data providers and 
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pathways for observations for the production suite. EMC will continue to engage and expand 
efforts with various parts of NESDIS (Center for Satellite Applications, Office of Satellite and 
Product Operations, System Architecture and Engineering) to ensure priorities for NWP are 
addressed and operational readiness for new observations is emphasized. Similarly, EMC will 
participate in activities associated with the NOAA Modeling Team working group on Enabling 
Observations into Models as well as the activities associated with the Interagency Council for 
Advancing Meteorological Services (such as the DA and Observations working group of the 
Committee on Research and Innovation). Further, the OAR-led Quantitative Observing System 
Assessment Program will remain a key component of our efforts moving forward to assess and 
improve impacts from the assimilation of observations into NWP models. 

EMC will also continue to build upon its strong foundation of international collaborations. This 
includes hosting scientists for 1-2 year visits, attending and hosting joint workshops, exchanging 
science, and facilitating technology transfer. Such collaborations are an important part of EMC’s 
DA strategy as they are an effective mechanism to bring in fresh ideas, be engaged in lower RL 
research, and develop longstanding, productive relationships. A recent example is EMC’s 
ongoing relationship with the Japan Meteorological Agency (JMA), which has led to numerous 
advances in operational DA. Recent examples include advancing the MGBF (Purser et al. 2022) 
for ensemble covariance localization, the introduction of scale- and variable-dependent 
localization (SDL/VDL) in the RRFS (Yokota et al. 2023), ongoing development and testing of 
Ensemble Tangent Linear Model in the RRFS DA system, and testing of convective-scale static 
background error covariances (Wang and Wang 2021) for RRFS with SDL/VDL. 

Examples of EMC International Collaborations 

Japan Meteorological Agency Visiting scientist program with EMC 

Brazil’s INPE-CPTEC (Center for Weather 
Forecast and Climatic Studies) 

Visiting scientist program with EMC, science 
exchange, workshops 

Taiwan Central Weather Administration 
Transfer of technology, GSI development and 
implementation, science exchange, 
workshops 

Korea – Korean Meteorological 
Administration and Korea Institute for 
Atmospheric Prediction Systems 

Transfer of technology, science exchange, 
workshops. 

United Kingdom Meteorological Office 
Science exchange, joint development of 
JEDI, Trans-Atlantic Data Academy (planned) 

World Meteorological Organization 
Participation in projects and working groups 
of World Weather Research Programme 
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This broader engagement also includes closer collaboration and coordination with observational 
data developers and providers. The DA scientific needs and operational constraints (and 
viability) need to be weighed when making decisions regarding the maintenance, enhancement, 
and development of observing networks and systems. This requires end-to-end planning and 
engagement. When it comes to the use of observations in operational DA systems, there is no 
such thing as the “last mile”, as all observations need continuous monitoring and optimization in 
order to make best use of the assets available. Investments need to be made to further 
generate evidence to better understand and define requirements and needs for future observing 
systems. 

4.1.3 Embracing Change and Integration of New Technologies 

While decisions have already been made to work toward a significant paradigm shift and fully 
embrace community modeling through the Unified Forecast System, a similar change in thinking 
and practice needs to be made when it comes to the actual implementation of operational 
applications and infusion of innovation. The NWS has long maintained a rather risk-averse 
posture for a variety of reasons, many justified. However, significant leaps in skill and integration 
of new science and technology to tackle grand challenges head-on will require disruptive, 
paradigm-shifting change. 

Several examples of areas for fairly radical change relative to current practices have been 
discussed in previous sections, including the decision to transition to JEDI as the infrastructure 
for unified DA. The evolution toward UFS-based applications creates a unique opportunity to 
consider alternate options for assimilation cadence and window strategies, moving toward more 
continuous (and possibly in-core) DA. This will require significant changes in how observations 
are ingested, decoded, and made available for the assimilation systems. The UFS-based 
systems are evolving away from traditional atmospheric-only forecasts, bringing with them new 
requirements for coupled assimilation. The applications also bring with them new requirements 
that may need evolution toward new algorithms, such as those that can better handle 
nonlinearity and non-Gaussianity. 

It is also worth remembering that DA does not exist in a vacuum. The algorithms that are used 
today and in the near future leverage the numerical models themselves as integral components. 
There is lots of work to be explored to exploit DA tools as part of the model development and 
optimization process. This includes aspects like quantitative parameter estimation, leveraging 
analysis increments and short-term model tendencies for reducing, (or correcting for) systematic 
biases and model errors, and targeting specific model improvements to advance the use of 
particular observations (e.g. targeting specific issues induced by model physics to make better 
use of cloud- and precipitation-affected satellite radiances). Closer interactions between DA 
developers and other aspects of the modeling system should be pursued and embraced. 

As technology will continue to rapidly advance and accelerate in the coming decade, it is 
imperative that the strategy accounts for the embracement and integration of such advances in 
both technologies and best practices. This includes the incorporation of new philosophies such 
as CI/CD, utilization of modern programming languages, pursuing advancements to take 
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advantage of next-generation computing architectures (including cloud), as well as exploitation 
and integration of AI/ML for both development and operational production. 

4.1.4 Workforce 

NCEP/EMC will only be able to organize around this unified vision effectively through its 
workforce. In order to execute the vision, it will be imperative to make the investments 
necessary to develop and grow the workforce in a way that is best aligned with the goals that 
have been laid out in this plan. To solve the challenging problems inherent to operational 
DA, NCEP/EMC needs an ability to recruit, integrate and retain the world’s best scientists 
in our field. Additional challenges will come about through the necessity for more rapid 
integration of innovations from other fields such as scientific programming, high-performance 
computing, data science and so on. Further, when considering the fact that EMC helps to bridge 
the research and operational aspects of the problem, the expertise required for the workforce is 
quite broad and challenging. The skill sets that are required for effective DA scientists (e.g. 
strong foundations in mathematics, physical sciences, and computational science) are 
exacerbated when transition and operational considerations are added on. 

Collaboration with key partners and the broader community is an essential component of the DA 
strategy. In addition to fundamental NWS responsibilities, this will require a dedicated core of 
world-class scientists to engage, innovate, and interact with partners and collaborators. This will 
necessitate active engagement in all aspects of the problem, including some elements on the 
cutting edge of science at significantly lower RLs than may have previously been considered. 
Partnerships and collaborations need to be established in an intentional way, explicitly 
leveraging complementary expertise and ensuring that such collaborations are mutually 
beneficial to those involved. The nature of this type of work will also demand that NCEP/EMC 
staff have the potential to engage in activities that have not traditionally been a core part of their 
work plans. This includes, but is not limited to, explicitly pursuing additional funding for lower RL 
projects, active participation as a member of the international communities through attending 
meetings, conferences, and workshops, and allocating time and funding for contributing 
EMC-related developments to the community through publications and other established 
mechanisms. Collaborations also take time and energy and come with overhead. Opportunities 
for scientific exchanges, visiting scientist programs or prolonged scientific visits, or possible 
sabbaticals may be desired to facilitate collaborative projects. These are also examples of 
activities that will help foster, build, and strengthen intentional partnerships and trust, ensuring 
longer-term sustained successes. 

It is also critical to think about the training and integration of the next generation of scientists, 
both to contribute to the current 10-year vision, but to ensure sustainability and carry things 
forward thereafter. This motivates a desire to have EMC staff engaged in activities such as 
internships, graduate student projects with partner universities, and postdoctoral mentorships. 
Some staff have already been involved in such activities and they have already paid dividends. 
For example, the DA group has mentored several students through both the William M. Lapenta 
NCEP summer internship program and the Ernest F. Hollings NOAA undergraduate scholarship 
program, and the engagement has resulted in several hires in recent years. EMC staff have also 
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been involved in overseeing graduate research projects and serving on doctoral committees. In 
addition to being incredibly rewarding for the staff, this has enabled engagement and growth of 
individuals to train them to be successful in the future on operationally relevant projects. 
Aspects of this were highlighted in the PWR report recommendations, specifically OD-3.2 to 
create a university consortium to address critical DA needs. NOAA has begun the process to 
establish the DA consortium, with a call for proposals released in 2023. NCEP will be an 
enthusiastic participant in the university consortium. 

Consistent with agency goals and principles, it is also critical that NCEP continue to emphasize 
the importance of diversity, equity, and inclusion amongst its staff. As previously mentioned, DA 
is inherently interdisciplinary in nature, and thus there is a need for a diverse staff with a wide 
variety of viewpoints, experiences, and areas of expertise. Outreach, mentorship, and hiring 
activities must follow practices that lead to a comprehensive workforce spanning from students 
to senior scientists. In addition to the traditional degrees in Earth/physical sciences and 
mathematics, computer science, and data science will only increase their roles as we move 
towards new challenges such as AI/ML or exascale computing. With this diversity in expertise 
over a variety of subjects and career stages, it is important to pay close attention to equity 
activities to ensure that each staff member can achieve their full potential, thus enhancing the 
ability of the group as a whole to meet its mission. In an increasingly interconnected world, 
where colleagues may live in different cities or even continents, scientific activities must be 
organized with inclusion in mind. The Covid-19 pandemic has emphasized that there are 
challenges associated with ensuring that all team members are set up to succeed, and that only 
one approach or solution may not be best for all involved. 

An equally important piece of the workforce puzzle is continued investment in DA staff. Staff 
must be equipped to rise up and meet the DA grand challenges. This is an ongoing process. 
Continuous growth, sustainment, and skill development need to become part of the culture and 
established best practice. This requires continued support from management. It also requires 
staff to not only understand but also embrace expectations. Growth comes not only from 
collaboration and mentoring, but also requires study. For example, the EMC DA team recently 
stood up an AI/ML study group with the goal of kickstarting AI/ML projects to address scientific 
and technical challenges. Sustainment refers to creating an environment in which staff flourish, 
not flounder. While supporting the mission is paramount, each staff member brings different 
passions, talents, and insights to the table. Creating an inclusive environment which stimulates 
creativity not only improves morale. Productivity increases with a growing commitment to and 
excitement for striving toward and achieving goals. With the emergence of new ideas and new 
technologies, there is an ever present need for skill development and enhancement among 
staff. The status quo is not sufficient to meet the grand challenges. Whether self study, inhouse 
training or attending off site classes, staff should be encouraged and opportunities provided to 
keep skill sets fresh. 
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Addressing Grand Challenges 
1. JEDI as foundational infrastructure – short term transition effort to lay the 

groundwork in order to embrace JEDI as the vehicle by which all DA 
advancements will be realized in the coming decade; 

2. Engagement across the funnel – EMC DA team will need to continue to be 
involved in projects of various state of operational readiness through 
collaboration with key partners and entities; 

3. Embracing change – a team developing and using cutting-edge scientific 
methods and computational technology will be essential to sustained 
innovation; 

4. Workforce development – all of this vision is only realized through a 
dedicated team which requires both efforts to recruit a diverse and capable 
workforce, but also to ensure continuous investment in the development of 
existing staff. 

4.2 Risk Management 
There is always going to be some risk associated with any endeavor toward integration of 
scientific innovation. The strategy to address the scientific grand challenges for DA will require a 
shift relative to current processes. There will need to be a balance toward embracing significant 
change and/or faster paced, incremental advancements. While a comprehensive strategy 
defines a path forward, strategy alone does not guarantee success. We outline here anticipated 
risks and, where possible, identify a risk response strategy that may be suitable. Risk 
management is a critical component to the successful realization of the priorities identified in 
this strategy and will be an integral part of the associated projects. 

4.2.1 Investment and Resource Risks 

The comprehensive vision presented herein requires significant and sustained investment in 
order to be fully realized. This will require commitment to continually invest in both human and 
machine resources. Insufficient, or episodic, investment in either will adversely affect the ability 
to realize this plan. 

Risk Response 

Workforce limitations in size and skill. Invest in continuous learning opportunities to 
expand the workforce’s technical and scientific 
knowledge. 

Engage in recruitment efforts, such as NOAA’s 
Office of Education scholarship, fellowship, and 
internship programs. 

Create a risk management plan for workforce size 
changes. Such a plan is likely most well-suited to 
be a part of the parent organization’s risk 
management profile. 
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Episodic funds - this category includes funds of 
limited duration. Such funds accommodate 
short-term increases in productivity but may not 
include sustained support for the resulting 
deliverable at the end of the funding period. This 
results in an orphaned deliverable. 

Robust strategic planning from which to identify 
priorities (this document) may be leveraged to 
identify mission-supportive projects. 

All projects associated with episodic funds should 
be designed and planned for support after the 
project concludes, with operations and 
maintenance resource requirements made clear at 
the proposal stage and refined through the 
project’s duration. This applies to internal 
development efforts as well as external efforts 
from collaborators. 

Insufficient high performance computing and Invest in the development of software that is 
fragmented computing. portable. 

Fragmented computing is a colloquial term that Pursue cloud computing options, which give 
refers to the situation in which high performance developers more control over the platform(s) on 
computing resources are spread across 3 or more which development is done. 
ecosystems. Such situations lead to suboptimal 
utilization of the aggregate FLOPS and can Develop a computing strategy with partner 
require considerable staff effort to maintain codes organizations to facilitate planning and alignment 
and experiments across multiple platforms. with resource needs in the next 5-10 years. 

Insufficient data storage. Leverage open and accessible cloud storage 
options where/when possible, such as through the 
NOAA Open Data Dissemination Program. 

Explore and utilize new data compression and big 
data storage formats. 

As with high performance computing, develop a 
data storage strategy with partner organizations to 
facilitate planning and alignment with resource 
needs in the next 5-10 years. 

4.2.2 Observational Data Risks 

Observations are a critical foundation for continuing to advance DA. Technologies for observing 
the Earth system continue to evolve and expand at a rapid pace. The explosion in observation 
data volumes, private-public partnerships, and new ways of doing business come with their own 
risks to our strategy for evolving DA in the next decade. These include but are not limited to 
some of the following: 
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Risk Response 

Radio frequency Interference (microwave 
radiance observations). 

Engagement with the wider community 
(including AMS, WMO) to advocate for 
retention of protected bands. 
Develop risk management strategies for any 
data loss/corruption that may occur. 

Increased use of private data sets, reducing 
free exchange of observations. 

Work with WMO and NOAA leadership to 
ensure that the free exchange of data is a 
requirement for any commercial purchase. 

Inability to use short-lived mission of 
opportunity measurements due to 
implementation cadence. 

Develop flexible implementation strategies 
with NCO to ensure that new observations 
can be assimilated as soon as ready. 

Lack of access to observational datasets due 
to security concerns (currently happening 
with Chinese satellite data). 

Work with NOAA management to define a 
path for access that will address these 
concerns. 

Kessler Syndrome. Refocus deployment and development of 
non-satellite observational systems, although 
a loss of forecast skill is inevitable. 

The effective use of observations in DA is not 
catching up and matching the amount of 
available observations and the operational 
cost of processing, calibrating, and 
distributing of observations. 

We need sufficient development 
computational resources and staff scientists 
to allow the timely testing of new and existing 
observations. New tools will likely also be a 
requirement. AI/ML may be leveraged. 

New observation types are not sufficient for Work with data providers and NOAA 
use in operational NWP due to factors such management to ensure that viability of use of 
as data availability, latency, or quality. observations is determined before significant 

resources are allotted to implement 
operational assimilation capabilities. 

With the exponential growth rate of satellite Transition from GSI to JEDI UFO gives us a 
data available to NWP, a robust observation chance to reinvent our observation monitoring 
monitoring system design and strategy are system. We should learn from our past 
required to efficiently monitor the status of experience and NWP peers to design a 
observations, quickly capture the problematic robust observation monitoring system to 
ones, and respond accordingly. address the issues (see left). 

4.2.3 Management Risks 

While the strategy presented in this document is limited to the DA activities at NCEP/EMC, we 
do not and should not work in a vacuum. Great care must be taken to ensure coordination 
internally with other parts of EMC, with the rest of NWS and other NOAA line offices more 
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broadly, and also with external collaborators. This would include not only day to day activities 
but also to ensure synergy through coordinated and streamlined project management. 

Risk Response 

With the transition of GSI to the JEDI-based Well defined project plans for JEDI transition as 
system, there will be a substantial period of time well as aspects of support for current operational 
the workforce will be tasked to facilitate the continuity with legacy systems. 
transition as well as to advance the current 
operational system. Build appropriate flexibility into schedule to allow 

for evolving scope. 

Growth of administrative task burdens (e.g. Institute formal project reporting guidelines to 
overheads from reporting and meetings, transition assemble reporting materials. 
plans, etc.). These burdens grow in a framework 
where development is spread across multiple Manage the frequency of reporting. 
organizations. 

Assign support staff to handle facilitation of major 
administrative duties. 

Extreme risk aversion that may arise in the 
enterprise is a risk as it may slow the pace of 
progress. 

Risk should be managed and tolerances adapted 
to best meet the needs of all stakeholders. 

4.2.4 External Dependence Risks 

A significant portion of EMC’s DA efforts over the next 10 years will be evaluation and transition 
to operations activities for replacing GSI with JEDI-based solutions throughout the operational 
production suite. Thus, a significant amount of risk for the success of future operational 
implementations is associated with the dependence on JEDI and its associated components. 

Risk Response 

Reliance on JCSDA core staff/other partners on 
maintenance/enhancement of key CRTM and 
JEDI software components. 

EMC will need to continue to spin up internal staff 
to support JEDI transition activities to build 
in-house expertise. 

Ensure support for CRTM and coefficient 
generation is prioritized by JCSDA and other 
partners to facilitate and ensure operational 
readiness. 

Maintain close relationships with JCSDA 
management and staff to permit and promote 
synergistic activities. 

Requirement of externally developed libraries for Establish accepted protocols for timely approval, 
JEDI-based applications. installation, and maintenance of required software 

infrastructure on operational (WCOSS) and 
RDHPCS machines. 
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A rapidly evolving and maturing system leads to a Ensure that sufficient EMC resources are 
lack of stable software releases for evaluating allocated towards both freezing stable versions of 
system scientific and efficiency performance. the software but also continuing to follow 

enhancements to the system through GitHub and 
personal communication. 

4.2.5 HPC and T2O 

The software development philosophy at EMC has undergone a significant change with the 
recent adoption of Agile practices and the implementation of parallel CI/CD pipelines. This 
follows the JEDI system development approach. This process ensures faster adoption of new 
developments in DA, but the EMC software pipeline is not directly integrated into the operational 
system. 

Risk Response 

Lengthy implementations tie up staff and compute 
resources for an extended duration. 

Accelerate implementations by delivering smaller 
packages. Doing so requires greater confidence in 
the robustness of the changes. CI/CD can offer 
robustness and enhance confidence. 

Different approaches to software infrastructure 
enhancement and maintenance. 

Streamline acceptance, installation, and support 
of forward looking software infrastructure. 

Balance appropriate security concerns with the 
need to provide cutting edge HPC environments 
for continued improvement of operational 
systems. 

Different testing and evaluation tools (e.g., 
different workflow engines) for development and 
operations. 

Adopt unified approaches for development and 
operations (e.g, use ecflow as workflow engine 
with developer support on operational and NOAA 
RDHPCS machines). 

Add operational metrics to development CI/CD 
(run time checks, error trapping checks). 

Significant HPC resources required to properly HPC funding and resource allocation (cloud or 
implement a CI/CD pipeline traditional) needs to take into consideration the 

cost to implement, maintain, and enhance CI/CD 
pipelines. 

Insufficient CI/CD expertise on both development 
and operational sides of T2O 

Ensure staff receive necessary CI/CD training. 
Commit to ongoing training to keep abreast of 
evolving CI/CD capabilities 
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4.3 Concluding Remarks 

As pointed out in the PWR Report (NOAA Science Advisory Board 2021), observations and DA 
are one of the three foundational pillars to enable a weather-ready nation. Some of the greatest 
leaps in operational prediction skill can be attributed to advancements in DA and improved initial 
conditions (Bauer et al. 2015; Benjamin et al. 2018). Operational prediction skill will continue to 
improve through advancing and improving the operational assimilation components. This 
document outlines a high-level strategy for advancing the state of infrastructure and science to 
enable improved operational assimilation capabilities for NOAA/NWS to meet its mission. 

The transition from legacy infrastructure to JEDI will be a major theme for the next several 
years. Significant investments will continue to be required in order for NCEP staff to be able to 
focus on making contributions to JEDI, building internal expertise and working toward 
operational hardening. While this is going to incur a significant short-term strain on resources, 
the implementation of a unified DA infrastructure for use across UFS-based applications and to 
enable coupled assimilation will set the stage for more rapid infusion of innovation thereafter. 

This strategic document outlines some of the specifics to improve the use of observations, begin 
operational preparedness for future satellite missions, and goals for advancing algorithms to 
meet some of the grand challenges. More importantly, perhaps, is the stated change in 
philosophy that will be required to realize the vision. Within the context of community modeling 
and engagement, NCEP staff will need to expand beyond traditional boundaries and become 
more involved in activities across the research spectrum rather than staying solely focused on 
high-readiness-level research and transition activities. Developments and innovation will need to 
be co-owned in order to be successful. Collaborations and partnerships will need to continue to 
be fostered and expanded. NWS will need to be willing to invest in, and take on, higher risk 
activities that have the potential for more significant benefits. 

There will also be a need for a philosophical shift away from pursuing incremental change and 
building on best practices that have been implemented and accumulated over the past. Some 
things, like moving toward more continuous and possible in-core DA will require a radical 
departure from how things are done today. Such shifts will also require a pivot to more quickly 
embrace new technologies and best practices. One example of this is the desire to begin 
integration of tools like those based on machine learning and the establishment of a study group 
within the assimilation team. Technology, including computing, will continue to accelerate in their 
advancements and it is critical to be able to keep pace. 

Finally, the workforce is the most important element in order to realize this strategy. Significant 
investments in workforce training, recruitment, development, and sustainment will be required in 
order to realize all of the aforementioned goals and priorities. The demands for a skilled DA 
workforce is high and competition is significant. It will be impossible to execute the vision 
without putting people first. 
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4.4 Relevance to NOAA Priorities and Strategic Plans 

Summary of relevant key items, priorities, and recommendations being addressed: 
● NWSSP Item 1.9. Collaborate across NOAA to increase visibility and access to the full 

range of integrated environmental information, forecasts, products, and services. 
● NWSSP Item 2.1. Build the world’s best unified, community-based, numerical Earth 

system prediction capabilities through collaboration with Enterprise partners. 
● NWSSP 2.4. Ensure continuous operations with foundational observing assets, including 

radar and satellite systems, and adoption of emerging technologies to reduce costs and 
improve information. 

● NWSSP 2.5. Utilize the broad observational capabilities of the Enterprise to establish the 
best possible analysis of the atmosphere, land surface, oceans, and cryosphere to 
ensure situational awareness, enable enhanced data assimilation, and meet growing 
user demands. 

● NWSSP 2.10. Partner with the Office of Oceanic and Atmospheric Research (OAR), the 
U.S. weather research community, and other Enterprise partners to ensure continuous 
development and transition of the latest scientific and technological advances into 
operations. 

● NWSSP 2.11. Streamline processes for rapid prototyping and adoption of innovative 
science and technologies into operations to support evolving forecaster roles and 
improve R2O/O2R efficiency. 

● NWSSP 3.2. Implement a comprehensive workforce training and development plan to 
advance the expanding skill sets required for operational forecasting, including greater 
emphasis on decision support; ensure expertise in core mission support capabilities 
including engineering, technology, and administration; and strengthen efficiency and 
productivity with enhanced capabilities in project management, configuration 
management, and risk management. 

● NWSSP 3.3. Sustain workforce capacity and skills that meet evolving mission needs, 
with outreach and strategies to improve the recruitment and retention of the best 
available talent, including those with STEM skill sets; implement hiring efficiencies and 
align hiring actions with workload needs; expand deployment-ready staff certified to 
support major events in collaboration with local and regional partners and across NOAA; 
and formalize knowledge transfer systems to sustain mission operations. 

● NWSSP 3.8. Clarify and leverage the unique roles and capabilities of Enterprise partners 
to respond to the increasing demand for actionable weather, water, and climate 
information. 

● NWSSP 3.9. Expand public-private partnerships that fast-track Enterprise innovations, 
strengthen relationships, eliminate barriers, and share best practices to focus continuous 
improvements. 

● R&DVA Key Questions 1.1. How can forecasts and warnings for hazardous weather and 
other environmental phenomena be improved? 

● R&DVA 3.1. How can unified modeling be integrated and improved with respect to skill, 
efficiency, and adaptability for service to stakeholders? 
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● R&DVA 3.2. How can Earth observations be advanced and their associated platforms be 
optimized to meet NOAA’s needs? 

● PWR OD-1. Maximize the use and assimilation of underutilized ground-based, airborne 
and marine observations - to ensure maximum value is derived from the full suite of 
observations in the Earth system model. 

● PWR OD-2. Maximize the use and assimilation of underutilized satellite observations - to 
ensure maximum value is derived from the full satellite constellation in support of an 
Earth system model approach. 

● PWR OD-3. Establish new support of novel methodology research and workforce 
development for data assimilation - to advance weather prediction and develop the 
future workforce. 

● PWR OD-4. Advance coupled Earth system data assimilation for weather, water and 
sub-seasonal to seasonal forecasting - to enable observations in one Earth system 
component to influence corrections in multiple components. 

● PWR OD-5. Advance the production of regional and global reanalyses - to improve 
detection of extreme events, forecast performance evaluation, improve use of 
observations. 

● PWR FE-4. Greatly increase university involvement in NOAA research - to gain their 
assistance in advancing the NOAA mission and in training the next generation of NOAA 
scientists. 
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Appendix A: Figures and Tables for Future Satellites 

Figure A1. Operational timeline of NOAA satellites in the next few decades. The information was 
collected from the WMO Observing Systems Capability Analysis and Review (OSCAR) tool. 
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Figure A2. Operational timeline of EUMETSAT and ESA satellites in the next few decades. The 
information collected from the WMO OSCAR tool as of December, 2023 
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Figure A3. Operational timeline of Asian satellites in the next few decades. The information was 
collected from the WMO Observing Systems Capability Analysis and Review (OSCAR) tools as 
of December 2023. 
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Table A1. Sensors on board of NOAA satellites listed in Figure A1. 
Priorities: 1=Legacy sensor; 2=New sensor requiring minimal additional development (can use 
existing framework); 3=New sensor that requires significant scientific development; 4=Will 
explore depending on data quality; x=Not allowed to use this because of security concerns. 
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Table A2. Sensors on board of EUMETSAT and ESA satellites listed in Figure A2. 
Priorities: 1=Legacy sensor; 2=New sensor requiring minimal additional development (can use 
existing framework); 3=New sensor that requires significant scientific development; 4=Will 
explore depending on data quality and resource availability; x=Not allowed to use this because 
of security concerns. 
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Table A3. Sensors on board of CMA satellites listed in Figure A3. 
Priorities: 1=Legacy sensor; 2=New sensor requiring minimal additional development (can use 
existing framework); 3=New sensor that requires significant scientific development; 4=Will 
explore depending on data quality and resource availability; x=Not allowed to use this because 
of security concerns. 
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Table A4. Sensors on board of Asian (non-CMA) satellites listed in Figure A3. 
Priorities: 1=Legacy sensor; 2=New sensor requiring minimal additional development (can use 
existing framework); 3=New sensor that requires significant scientific development; 4=Will 
explore depending on data quality and resource availability; x=Not allowed to use this because 
of security concerns. 
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Figure A4. Atmospheric spectrum in the MW millimeter (mm) to sub-mm range. Figure adapted 
from Klein and Gasiewski (2000). 
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Table A5. The absorption band and central frequency for US MW sensors available to NWP 
during the next few decades. 
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Table A6. The absorption band and central frequency for European MW sensors available to 
NWP during the next few decades. 
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Table A7. The absorption band and central frequency for Asian MW sensors available to NWP 
during the next few decades. 
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Table A8. The absorption band and central frequency for SmallSat/CubeSat MW sensors 
available to NWP during the next few decades. 

Figure A5. SmallSat/CubeSat Mission Status. 
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Figure A6. Spectral Coverage of satellite-based IR sounders and imagers. The new upcoming 
IR sounders are the geostationary IRS, the next generation polar-orbiting IASI. The new 
imagers are the polar-orbiting METimage, and the geostationary FCI. 
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Figure A7. Operational timeline of satellites for ocean DA in the next few decades. 

Table A9. Sensors on board of each satellite listed in Figure A7. 
Priorities: 1=Legacy sensor; 2=New sensor requiring minimal additional development (can use existing 
framework); 3=New sensor that requires significant scientific development; 4=Will explore depending 
on data quality; x=Not allowed to use this because of security concerns. 
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Appendix B: JEDI Components and Design 

The Joint Effort for Data assimilation Integration (JEDI) project is the next-generation DA system being 
developed by the JCSDA and its partners, including NOAA. A key concept for modern software 
development for complex systems such as JEDI is the idea of separation of concerns. This means that 
when a complete codebase becomes too large or complex for one person or group to be experts in, it is 
broken down into pieces that are more focused and allow developers to become experts in their 
relevant areas of the system. Through this separation of concerns also comes modularity, and with the 
inclusion of object-oriented programming, JEDI can create a series of applications from a combined set 
of separate, but complementary, libraries. 

At the center of JEDI is the Object Oriented Prediction System, or OOPS. This is the high level driver 
that contains all the generic code for running a DA system. OOPS includes code for variational and 
ensemble solvers, utilities such as time manipulation, and other high-level codes to be utilized by final 
applications. There are two key components that deal with observations, for I/O and storage, as well as 
their use. The Interface for Observational Data Access, or IODA, library deals with the reading, writing, 
and access of observational data in memory (including distribution). IODA includes file backends (such 
as netCDF) in order to read data from disk and write out model-space diagnostics. The Unified Forward 
Operator (UFO) library contains all aspects of the use of observations. This includes the forward, 
tangent linear, and adjoint operators for observations, and quality control filters and error assignment 
procedures. There are other model-agnostic key libraries included in JEDI. The System Agnostic 
Background Error Representation, or SABER, library, provides generic tools for computing and working 
with the background error covariance matrix, a key component of DA. Finally, the VAriable DErivation 
Repository, or VADER, provides generic routines for deriving variables from other variables using a set 
of recipes. 

These libraries form the shared codebase of a JEDI application, but most JEDI applications require a 
model interface to be included. Each modeling system that is supported by JEDI requires a model 
interface library to be developed. For FV3 based models, there is FV3-JEDI, for MPAS, MPAS-JEDI, for 
MOM6 and CICE6 there is the Sea-Ice, Ocean, and Coupled Assimilation, or SOCA, interface. Each of 
these interfaces provide the connection between the model specific implementation and the generic 
JEDI libraries for a DA application. A variational DA application for FV3 or MPAS, for example, would 
share the majority of the same codebase from the agnostic libraries, and would only differ in their model 
specific interface code. This allows for more rapid development of DA systems for other models, as 
only the model interface needs to be developed, all other components (the solver, the observation 
operators, etc.) are already ready to be linked to at compile time. The end result of building JEDI is a 
series of executables that are a combination of the generic libraries in JEDI and the model interface(s) 
that the user requires for their prediction system. A brief overview diagram is shown in Fig. B1. 
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Figure B1. Overview of the JEDI-Based DA infrastructure and components. 
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Appendix C: Abbreviations, Acronyms, and Terminology 

3DVar Three-Dimensional Variational 
3DEnVar Three-Dimensional Ensemble Variational 
4DVar Four-Dimensional Variational 
4DEnVar Four-Dimensional Ensemble Variational 
ABI Advanced Baseline Imager 
AD Adjoint 
AHI Advanced Himawari Imager 
ALADIN Atmospheric Laser Doppler Instrument 
AI Artificial intelligence 
AIRS Atmospheric Infrared Sounder 
AMS American Meteorological Society 
AMSR Advanced Microwave Scanning Radiometer 
AMSR-E Advanced Microwave Scanning Radiometer-EOS 
AMSU-A Advanced Microwave Sounding Unit - A 
AMV Atmospheric Motion Vector 
AOD Aerosol Optical Depth 
ATMS Advanced Technology Microwave Sounder 
AVHRR Advanced Very High Resolution Radiometer 
BUFR Binary Universal Form for the Representation of meteorological data 
BUMP Background error on an Unstructured Mesh Package 
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 
CD Continuous Deployment 
CFS Climate Forecast System 
CFSR Climate Forecast System Reanalysis 
CI Continuous Integration 
CONUS Contiguous United States 
COSMIC Constellation Observing System for Meteorology, Ionosphere, and Climate 
CPU Central Processing Unit 
CRIS Cross-track Infrared Sounder 
CRISTAL Copernicus Polar Ice and Snow Topography Altimeter 
CRTM Community Radiative Transfer Model 
CYGNSS Cyclone Global Navigation Satellite System 
DA Data Assimilation 
DFI Digital Filter Initialization 
DTC Developmental Testbed Center 
ECMWF European Centre for Medium-Range Weather Forecasts 
EDA Ensembles of Data Assimilation 
EMC Environmental Modeling Center 
ENKF Ensemble Kalman Filter 
EnVar Ensemble-Variational 
EPIC Earth Prediction Innovation Center 
ESA European Space Agency 
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites 
FCI Flexible Combined Imager 
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FLOPS Floating Point Operations 
FSOI Forecast Sensitivity to Observations Impact 
FV3 Finite-Volume Cubed-Sphere dynamical core 
GDAS Global Data Assimilation System 
GEFS Global Ensemble Forecasting System 
GEMS Geostationary Environment Monitoring Spectrometer 
GEO Geostationary Orbit 
GEO-XO Geostationary Extended Observations 
GFS Global Forecast System 
GHG Greenhouse Gas 
GIIRS Geostationary Interferometric Infrared Sounder 
GMI Global Precipitation Measurement Microwave Imager 
GNSS Global Navigation Satellite System 
GNSS-R Global Navigation Satellite System-Reflectometry 
GNSS-RO Global Navigation Satellite System-Radio Occultation 
GODAS Global Ocean Data Assimilation System 
GOES Geostationary Operational Environmental Satellites 
GPU Graphics Processing Unit 
GRACE Gravity Recovery and Climate Experiment 
GSI Gridpoint Statistical Interpolation analysis system 
GTS Global Telecommunication System 
HAFS Hurricane Analysis and Forecasting System 
HFIP Hurricane Forecast Improvement Program 
HWRF Hurricane Weather Research and Forecasting Model 
IODA Interface for Observational Data Access 
IoT Internet of Things 
HPC High performance computing 
HRRR High Resolution Rapid Refresh 
I/O Input/Output 
IASI Infrared Atmospheric Sounding Interferometer 
IAU Incremental Analysis Update 
ICI Ice Cloud Imager 
IR Infrared 
IRS Infrared Sounder 
JCSDA Joint Center for Satellite Data Assimilation 
JEDI Joint Effort for Data assimilation Integration 
JPSS Joint Polar Satellite System 
LEO Low Earth Orbit 
LETLM Local Ensemble Tangent-Linear Model 
LIDAR Light Detection and Ranging 
LMAI Language model Artificial Intelligence 
MET Model Evaluation Tools 
METEOSAT Meteorological Satellite (EUMETSAT Geo) 
METOP Meteorological Operational satellite (EUMETSAT Leo) 
MHS Microwave Humidity Sounding 
ML Machine learning 
MRW Medium Range Weather 
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MTG Meteosat Third Generation 
MW Microwave 
MWI Microwave Imager 
MWS Microwave Sounder 
NCAR National Center for Atmospheric Research 
NCEP National Centers for Environmental Prediction 
NCL NCAR Command Language 
NCO NWS Central Operations 
NDVI Normalized Difference Vegetation Index 
NEON NOAA’s Near Earth Orbit Network 
NEXRAD Next-generation weather radar 
NGGM Next Generation Gravity Mission 
NGGPS Next Generation Global Prediction System 
NOAA National Oceanic and Atmospheric Administration 
NSST Nea-Surface Sea Temperature 
NWP Numerical weather prediction 
NWS National Weather Service 
NWSSP National Weather Service Strategic Plan 
O2R Operations to Research 
OAR Oceanic and Atmospheric Research 
OMI Ozone Monitoring Instrument 
OMPS Ozone Mapping and Profiler Suite 
OOPS Object-Oriented Prediction System 
OSCAR Observing Systems Capability Analysis and Review 
OSE Observing System Experiment 
PACE Plankton, Aerosol, Cloud, ocean Ecosystems mission 
PDA Product Distribution and Access 
PWR Report on Priorities for Weather Research 
QC Quality Control 
R&DVA Research and Development Vision Areas 
R2D2 Research Repository for Data and Diagnostics 
R2O Research to Operations 
RAP Rapid Refresh (system) 
RDHPCS Research and Development High Performance Computing System 
RL Readiness Level 
RMS Root Mean Square 
RRFS Rapid Refresh Forecast System 
RTMA Real-Time Mesoscale Analysis 
RTOFS Real Time Ocean Forecast System 
RTTOV Radiative Transfer for TOVS 
S2S Subseasonal to Seasonal 
SDL Scale-dependent Localization 
SEVIRI Spinning Enhanced Visible Infra-Red Imager 
SFS Seasonal Forecasting System 
SOCA Sea-ice Ocean and Coupled Assimilation 
SMBA Sounder for Microwave-Based Applications 
SSI Spectral Statistical Interpolation analysis system 
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SSMIS Special Sensor Microwave - Imager/Sounder 
SST Sea Surface Temperature 
STI Science and Technology Integration 
SWOT Surface Water and Ocean Topography 
TAC Traditional Alphanumeric Codes 
TDCF Table Driven Code Forms 
TDR Tail Doppler Radar 
TDWR Terminal Doppler Weather Radar 
TEC Total Electron Content 
TEMPEST Temporal Experiment for Storms and Tropical Systems 
TEMPO Tropospheric Emissions: Monitoring Pollution 
TIROS Television InfraRed Observation Satellite 
TL Tangent-Linear 
TLNMC Tangent-Linear Normal Mode Constraint 
TOVS TIROS Operational Vertical Sounder 
TROPICS Time-Resolved Observations of Precipitation structure and storm Intensity with a 

Constellation of Smallsats 
TROPOMI Tropospheric Monitoring Instrument 
UAS Uncrewed Aircraft System or Uncrewed Autonomous System 
UFO Unified Forward Operator 
UFS Unified Forecast System 
VAD Velocity-Azimuthal Display 
VARQC Variational Quality Control 
VIIRS Visible/Infrared Imager Radiometer Suite 
VOC Volatile Organic Compound 
WCOSS Weather and Climate Operational Supercomputing System 
WAM-IPE Whole Atmosphere Model-Ionosphere Plasmasphere Electrodynamics 
WDAS Whole atmosphere Data Assimilation System 
WDQMS WIGOS Data Quality Monitoring System 
WIGOS WMO Integrated Observing System 
WMO World Meteorological Organization 
WPO Weather Program Office 
WSR-88D Weather Surveillance Radar-1988 
ZTD Zenith Total Delay 
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